
FastRTPS Documentation
Release 1.9.3

eProsima

Nov 15, 2019

Installation manual

1 Requirements 3
1.1 Common Dependencies . 3
1.2 Windows 7 32-bit and 64-bit . 3

2 Installation from Binaries 5
2.1 Windows 7 32-bit and 64-bit . 5
2.2 Linux . 5

3 Installation from Sources 7
3.1 Dependencies . 7
3.2 Colcon installation . 7
3.3 Manual installation . 8
3.4 Fast-RTPS-gen . 8
3.5 Security . 8

4 Getting Started 11
4.1 A brief introduction to the RTPS protocol . 11
4.2 Building your first application . 12

5 Library Overview 15
5.1 Fast RTPS architecture . 16

6 Objects and Data Structures 17
6.1 Publisher-Subscriber Module . 17
6.2 RTPS Module . 17

7 Publisher-Subscriber Layer 19
7.1 How to use the Publisher-Subscriber Layer . 19
7.2 Configuration . 21
7.3 Additional Concepts . 33

8 Writer-Reader Layer 35
8.1 Relation to the Publisher-Subscriber Layer . 35
8.2 How to use the Writer-Reader Layer . 35
8.3 Configuring Readers and Writers . 37
8.4 Configuring the History . 38

9 Advanced Functionalities 39

i

9.1 Topics and Keys . 39
9.2 Intra-process delivery . 40
9.3 Transports . 40
9.4 Flow Controllers . 52
9.5 Sending large data . 53
9.6 Discovery . 55
9.7 Subscribing to Discovery Topics . 61
9.8 Tuning . 63
9.9 Additional Quality of Service options . 64
9.10 Logging . 64

10 Security 69
10.1 Authentication plugins . 69
10.2 Access control plugins . 69
10.3 Cryptographic plugins . 70
10.4 Built-in plugins . 70
10.5 Example: configuring the Participant . 79

11 Real-time behavior 85
11.1 Tuning allocations . 85
11.2 Non-blocking calls . 89

12 Dynamic Topic Types 91
12.1 Concepts . 91
12.2 Supported Types . 92
12.3 Complex examples . 98
12.4 Serialization . 100
12.5 Important Notes . 101
12.6 Dynamic Types Discovery and Endpoint Matching . 101
12.7 XML Dynamic Types . 102

13 Persistence 103
13.1 Configuration . 103
13.2 Built-in plugins . 104

14 XML profiles 107
14.1 Making an XML . 107
14.2 Library settings . 108
14.3 Transport descriptors . 109
14.4 XML Dynamic Types . 112
14.5 Participant profiles . 122
14.6 Publisher profiles . 129
14.7 Subscriber profiles . 131
14.8 Common . 133
14.9 Example . 138

15 Code generation using fastrtpsgen 151
15.1 Output . 151
15.2 Where to find fastrtpsgen . 152

16 Introduction 153
16.1 Compile . 153

17 Execution and IDL Definition 155
17.1 Building publisher/subscriber code . 155

ii

17.2 Defining a data type via IDL . 156

18 Version 1.9.3 161
18.1 Previous versions . 162

iii

iv

FastRTPS Documentation, Release 1.9.3

eprosima Fast RTPS is a C++ implementation of the RTPS (Real Time Publish-Subscribe) protocol, which provides
publisher-subscriber communications over unreliable transports such as UDP, as defined and maintained by the Object
Management Group (OMG) consortium. RTPS is also the wire interoperability protocol defined for the Data Distri-
bution Service (DDS) standard, again by the OMG. eProsima Fast RTPS holds the benefit of being standalone and
up-to-date, as most vendor solutions either implement RTPS as a tool to implement DDS or use past versions of the
specification.

Some of the main features of this library are:

• Configurable best-effort and reliable publish-subscribe communication policies for real-time applications.

• Plug and play connectivity so that any new applications are automatically discovered by any other members of
the network.

• Modularity and scalability to allow continuous growth with complex and simple devices in the network.

• Configurable network behavior and interchangeable transport layer: Choose the best protocol and system in-
put/output channel combination for each deployment.

• Two API Layers: a high-level Publisher-Subscriber one focused on usability and a lower-level Writer-Reader
one that provides finer access to the inner workings of the RTPS protocol.

eProsima Fast RTPS has been adopted by multiple organizations in many sectors including these important cases:

• Robotics: ROS (Robotic Operating System) as their default middleware for ROS2.

• EU R&D: FIWARE Incubated GE.

This documentation is organized into the following sections:

• Installation manual

• User Manual

• FastRTPSGen Manual

• Release Notes

Installation manual 1

http://www.eprosima.com/

FastRTPS Documentation, Release 1.9.3

2 Installation manual

CHAPTER 1

Requirements

eProsima Fast RTPS requires the following packages to work.

1.1 Common Dependencies

1.1.1 Gtest

Gtest is needed to compile the tests when building from sources.

1.1.2 Java & Gradle

Java & gradle is required to make use of our built-in code generation tool fastrtpsgen (see Compile).

1.2 Windows 7 32-bit and 64-bit

1.2.1 Visual C++ 2015 or 2017 Redistributable Package

eProsima Fast RTPS requires the Visual C++ Redistributable packages for the Visual Studio version you choose during
the installation or compilation. The installer gives you the option of downloading and installing them.

3

FastRTPS Documentation, Release 1.9.3

4 Chapter 1. Requirements

CHAPTER 2

Installation from Binaries

You can always download the latest binary release of eProsima Fast RTPS from the company website.

2.1 Windows 7 32-bit and 64-bit

Execute the installer and follow the instructions, choosing your preferred Visual Studio version and architecture when
prompted.

2.1.1 Environmental Variables

eProsima Fast RTPS requires the following environmental variable setup in order to function properly

• FASTRTPSHOME: Root folder where eProsima Fast RTPS is installed.

• Additions to the PATH: the /bin folder and the subfolder for your Visual Studio version of choice should be
appended to the PATH.

These variables are set automatically by checking the corresponding box during the installation process.

2.2 Linux

Extract the contents of the package. It will contain both eProsima Fast RTPS and its required package eProsima Fast
CDR. You will have to follow the same procedure for both packages, starting with Fast CDR.

Configure the compilation:

$./configure --libdir=/usr/lib

If you want to compile with debug symbols (which also enables verbose mode):

5

http://www.eprosima.com/

FastRTPS Documentation, Release 1.9.3

$./configure CXXFLAGS="-g -D__DEBUG" --libdir=/usr/lib

After configuring the project compile and install the library:

$ sudo make install

6 Chapter 2. Installation from Binaries

CHAPTER 3

Installation from Sources

3.1 Dependencies

3.1.1 Asio and TinyXML2 libraries

On Linux, you can install these libraries using the package manager of your Linux distribution. For example, on
Ubuntu you can install them by using its package manager with the next command.

sudo apt install libasio-dev libtinyxml2-dev

On Windows, you can install these libraries using Chocolatey. First, download the following chocolatey packages
from this ROS2 Github repository.

• asio.1.12.1.nupkg

• tinyxml2.6.0.0.nupkg

Once these packages are downloaded, open an administrative shell and execute the following command:

choco install -y -s <PATH\TO\DOWNLOADS\> asio tinyxml2

Please replace <PATH\TO\DOWNLOADS> with the folder you downloaded the packages to.

3.2 Colcon installation

colcon is a command line tool to build sets of software packages. This section explains to use it to compile easily
Fast-RTPS and its dependencies. First install ROS2 development tools (colcon and vcstool):

pip install -U colcon-common-extensions vcstool

Download the repos file that will be used to download Fast RTPS and its dependencies:

7

https://chocolatey.org
https://github.com/ros2/choco-packages/releases/latest
https://colcon.readthedocs.io
https://colcon.readthedocs.io

FastRTPS Documentation, Release 1.9.3

$ wget https://raw.githubusercontent.com/eProsima/Fast-RTPS/master/fastrtps.repos
$ mkdir src
$ vcs import src < fastrtps.repos

Finally, use colcon to compile all software:

$ colcon build

3.3 Manual installation

Before compiling manually Fast RTPS you need to clone the following dependencies and compile them using CMake.

• Fast CDR

$ git clone https://github.com/eProsima/Fast-CDR.git
$ mkdir Fast-CDR/build && cd Fast-CDR/build
$ cmake ..
$ cmake --build . --target install

• Foonathan memory

$ git clone https://github.com/eProsima/foonathan_memory_vendor.git
$ cd foonathan_memory_vendor
$ mkdir build && cd build
$ cmake ..
$ cmake --build . --target install

Once all dependencies are installed, you will be able to compile and install Fast RTPS.

$ git clone https://github.com/eProsima/Fast-RTPS.git
$ mkdir Fast-RTPS/build && cd Fast-RTPS/build
$ cmake ..
$ cmake --build . --target install

If you want to compile the examples, you will need to add the argument -DCOMPILE_EXAMPLES=ON when calling
CMake.

If you want to compile the performance tests, you will need to add the argument -DPERFORMANCE_TESTS=ON
when calling CMake.

For generate fastrtpsgen please see Compile.

3.4 Fast-RTPS-gen

If you want to compile fastrtpsgen java application, you will need to download its source code from the Fast-RPTS-
Gen repository and with --recursive option and compile it calling gradle assemble. For more details see
Compile.

3.5 Security

By default, Fast RTPS doesn’t compile security support. You can activate it adding -DSECURITY=ON at CMake
configuration step. More information about security on Fast RTPS, see Security.

8 Chapter 3. Installation from Sources

https://colcon.readthedocs.io
https://cmake.org
https://github.com/eProsima/Fast-CDR.git
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-RTPS-Gen
https://github.com/eProsima/Fast-RTPS-Gen

FastRTPS Documentation, Release 1.9.3

When security is activated on compilation Fast RTPS builds several built-in security plug-ins. Some of them have the
dependency of OpenSSL library.

3.5.1 OpenSSL installation on Linux

Surely you can install OpenSSL using the package manager of your Linux distribution. For example, on Ubuntu you
can install OpenSSL using its package manager with next command.

sudo apt install libssl-dev

3.5.2 OpenSSL installation on Windows

You can download OpenSSL 1.0.2 for Windows in this webpage. This is the OpenSSL version tested by our
team. Download and use the installer that fits your requirements. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory. For example:

OPENSSL_ROOT_DIR=C:\OpenSSL-Win64

3.5. Security 9

https://slproweb.com/products/Win32OpenSSL.html

FastRTPS Documentation, Release 1.9.3

10 Chapter 3. Installation from Sources

CHAPTER 4

Getting Started

4.1 A brief introduction to the RTPS protocol

At the top of RTPS, we find the Domain, which defines a separate plane of communication. Several domains can
coexist at the same time independently. A domain contains any number of Participants, elements capable of sending
and receiving data. To do this, the participants use their Endpoints:

• Reader: Endpoint able to receive data.

• Writer: Endpoint able to send data.

A Participant can have any number of writer and reader endpoints.

Communication revolves around Topics, which define the data being exchanged. Topics don’t belong to any participant
in particular; instead, all interested participants keep track of changes to the topic data and make sure to keep each
other up to date. The unit of communication is called a Change, which represents an update to a topic. Endpoints
register these changes on their History, a data structure that serves as a cache for recent changes. When you publish a
change through a writer endpoint, the following steps happen behind the scenes:

• The change is added to the writer’s history cache.

• The writer informs any readers it knows about.

• Any interested (subscribed) readers request the change.

11

FastRTPS Documentation, Release 1.9.3

• After receiving data, readers update their history cache with the new change.

By choosing Quality of Service policies, you can affect how these history caches are managed in several ways, but the
communication loop remains the same. You can read more information in Configuration.

4.2 Building your first application

To build a minimal application, you must first define the topic. To define the data type of the topic Fast-RTPS offers two
different approaches, dynamically through Dynamic Topic Types and statically through Interface Definition Language
(IDL). In this example, we will define the data type statically with IDL, you have more information about IDL in
Introduction.

Write an IDL file containing the specification you want. In this case, a single string is sufficient.

// HelloWorld.idl
struct HelloWorld
{

string msg;
};

Now we need to translate this file to something Fast RTPS understands. For this we have a code generation tool called
fastrtpsgen (see Introduction), which can do two different things:

• Generate C++ definitions for your custom topic.

• Optionally, generate a working example that uses your topic data.

You may want to check out the fastrtpsgen user manual, which comes with the distribution of the library. But for now,
the following commands will do:

On Linux:

fastrtpsgen -example CMake HelloWorld.idl

On Windows:

fastrtpsgen.bat -example CMake HelloWorld.idl

The -example option creates an example application, and the files needed to build it.

On Linux:

mkdir build && cd build
cmake ..
make

On Windows:

mkdir build && cd build
cmake -G "Visual Studio 15 2017 Win64" ..
cmake --build .

The application build can be used to spawn any number of publishers and subscribers associated with your topic.

On Linux:

./HelloWorldPublisherSubscriber publisher

./HelloWorldPublisherSubscriber subscriber

12 Chapter 4. Getting Started

FastRTPS Documentation, Release 1.9.3

On Windows:

HelloWorldPublisherSubscriber.exe publisher
HelloWorldPublisherSubscriber.exe subscriber

You may need to set up a special rule in your Firewall for eprosima Fast RTPS to work correctly on Windows.

Each time you press <Enter> on the Publisher, a new datagram is generated, sent over the network and receiver by
Subscribers currently online. If more than one subscriber is available, it can be seen that the message is equally
received on all listening nodes.

You can modify any values on your custom, IDL-generated data type before sending.

HelloWorld sample; //Auto-generated container class for topic data from FastRTPSGen
sample.msg("Hello there!"); // Add contents to the message
publisher->write(&sample); //Publish

Take a look at the examples/ folder for ideas on how to improve this basic application through different configuration
options, and for examples of advanced Fast RTPS features.

4.2. Building your first application 13

FastRTPS Documentation, Release 1.9.3

14 Chapter 4. Getting Started

CHAPTER 5

Library Overview

You can interact with Fast RTPS at two different levels:

• Publisher-Subscriber: Simplified abstraction over RTPS.

• Writer-Reader: Direct control over RTPS endpoints.

In red, the Publisher-Subscriber layer offers a convenient abstraction for most use cases. It allows you to define
Publishers and Subscribers associated with a topic, and a simple way to transmit topic data. You may remember this
from the example we generated in the “Getting Started” section, where we updated our local copy of the topic data, and

15

FastRTPS Documentation, Release 1.9.3

called a write() method on it. In blue, the Writer-Reader layer is closer to the concepts defined in the RTPS standard,
and allows a finer control, but requires you to interact directly with history caches for each endpoint.

5.1 Fast RTPS architecture

5.1.1 Threads

eProsima Fast RTPS is concurrent and event-based. Each participant spawns a set of threads to take care of background
tasks such as logging, message reception, and asynchronous communication. This should not impact the way you use
the library: the public API is thread safe, so you can fearlessly call any methods on the same participant from different
threads. However, it is still useful to know how Fast RTPS schedules work:

• Main thread: Managed by the application.

• Event thread: Each participant owns one of these, and it processes periodic and triggered events.

• Asynchronous writer thread: This thread manages asynchronous writes for all participants. Even for syn-
chronous writers, some forms of communication must be initiated in the background.

• Reception threads: Participants spawn a thread for each reception channel, where the concept of a channel
depends on the transport layer (e.g. a UDP port).

5.1.2 Events

There is an event system that enables Fast RTPS to respond to certain conditions, as well as schedule periodic activities.
Few of them are visible to the user since most are related to RTPS metadata. However, you can define your own
periodic events by inheriting from the TimedEvent class.

16 Chapter 5. Library Overview

CHAPTER 6

Objects and Data Structures

In order to make the most of eProsima Fast RTPS it is important to have a grasp of the objects and data structures
included in the library. eProsima Fast RTPS objects are classified by modules, which are briefly listed and described
in this section. For full coverage take a look at the API Reference document that comes with the distribution.

6.1 Publisher-Subscriber Module

This module composes the Publisher-Subscriber abstraction we saw in the Library Overview. The concepts here are
higher level than the RTPS standard.

• Domain Used to create, manage and destroy high-level Participants.

• Participant Contains Publishers and Subscribers, and manages their configuration.

– ParticipantAttributes Configuration parameters used in the creation of a Participant.

– ParticipantListener Allows you to implement callbacks within the scope of the Participant.

• Publisher Sends (publishes) data in the form of topic changes.

– PublisherAttributes Configuration parameters for the construction of a Publisher.

– PublisherListener Allows you to implement callbacks within the scope of the Publisher.

• Subscriber Receives data for the topics it subscribes to.

– SubscriberAttributes Configuration parameters for the construction of a Subscriber.

– SubscriberListener Allows you to implement callbacks within the scope of the Subscriber.

6.2 RTPS Module

This module directly maps to the ideas defined in the RTPS standard and allows you to interact with RTPS entities
directly. It consists of a few sub-modules:

17

FastRTPS Documentation, Release 1.9.3

6.2.1 RTPS Common

• CacheChange_t Represents a change to a topic, to be stored in a history cache.

• Data Payload associated with a cache change. It may be empty depending on the message and change type.

• Message Defines the organization of an RTPS Message.

• Header Standard header that identifies a message as belonging to the RTPS protocol, and includes the vendor
id.

• Sub-Message Header Identifier for an RTPS sub-message. An RTPS Message can be composed of several
sub-messages.

• MessageReceiver Deserializes and processes received RTPS messages.

• RTPSMessageCreator Composes RTPS messages.

6.2.2 RTPS Domain

• RTPSDomain Use it to create, manage and destroy low-level RTPSParticipants.

• RTPSParticipant Contains RTPS Writers and Readers, and manages their configuration.

– RTPSParticipantAttributes Configuration parameters used in the creation of an RTPS Partici-
pant.

– PDPSimpleAllows the participant to become aware of the other participants within the Network, through
the Participant Discovery Protocol.

– EDPSimpleAllows the Participant to become aware of the endpoints (RTPS Writers and Readers) present
in the other Participants within the network, through the Endpoint Discovery Protocol.

– EDPStatic Reads information about remote endpoints from a user file.

– TimedEvent Base class for periodic or timed events.

6.2.3 RTPS Reader

• RTPSReader Base class for the reader endpoint.

– ReaderAttributes Configuration parameters used in the creation of an RTPS Reader.

– ReaderHistory History data structure. Stores recent topic changes.

– ReaderListener Use it to define callbacks in scope of the Reader.

6.2.4 RTPS Writer

• RTPSWriter Base class for the writer endpoint.

– WriterAttributes Configuration parameters used in the creation of an RTPS Writer.

– WriterHistory History data structure. Stores outgoing topic changes and schedules them to be sent.

18 Chapter 6. Objects and Data Structures

CHAPTER 7

Publisher-Subscriber Layer

eProsima Fast RTPS provides a high-level Publisher-Subscriber Layer, which is a simple to use abstraction over the
RTPS protocol. By using this layer, you can code a straight-to-the-point application while letting the library take care
of the lower level configuration.

7.1 How to use the Publisher-Subscriber Layer

We are going to use the example built in the previous section to explain how this layer works.

The first step is to create a Participant instance, which will act as a container for the Publishers and Subscribers
our application needs. For this we use Domain, a static class that manages RTPS entities. We also need to pass a
configuration structure for the Participant, which can be left in its default configuration for now:

ParticipantAttributes participant_attr; //Configuration structure
Participant *participant = Domain::createParticipant(participant_attr);

The default configuration provides a basic working set of options with predefined ports for communications. During
this tutorial, you will learn to tune eProsima Fast RTPS.

In order to use our topic, we have to register it within the Participant using the code generated with fastrtpsgen
(see Introduction. Once again, this is done by using the Domain class:

HelloWorldPubSubType m_type; //Auto-generated type from FastRTPSGen
Domain::registerType(participant, &m_type);

Once set up, we instantiate a Publisher within our Participant:

PublisherAttributes publisher_attr; //Configuration structure
PubListener publisher_listener; //Class that implements callbacks from the publisher
Publisher *publisher = Domain::createPublisher(participant, publisher_attr, &
→˓publisher_listener);

Once the Publisher is functional, posting data is a simple process:

19

FastRTPS Documentation, Release 1.9.3

HelloWorld sample; //Auto-generated container class for topic data from FastRTPSGen
sample.msg("Hello there!"); // Add contents to the message
publisher->write(&sample); //Publish

The Publisher has a set of optional callback functions that are triggered when events happen. An example is when
a Subscriber starts listening to our topic.

To implement these callbacks we create the class PubListener, which inherits from the base class
PublisherListener. We pass an instance to this class during the creation of the Publisher.

class PubListener : public PublisherListener
{

public:

PubListener() {}
~PubListener() {}

void onPublicationmatched(Publisher* pub, MatchingInfo& info)
{

//Callback implementation. This is called each time the Publisher finds a
→˓Subscriber on the network that listens to the same topic.

}
};

The Subscriber creation and implementation are symmetric.

SubscriberAttributes subscriber_attr; //Configuration structure
SubListener subscriber_listener; //Class that implements callbacks from the Subscriber
Subscriber *subscriber = Domain::createSubscriber(participant, subscriber_attr, &
→˓subscriber_listener);

Incoming messages are processed within the callback that is called when a new message is received:

class SubListener: public SubscriberListener
{

public:

SubListener() {}

~SubListener() {}

void onNewDataMessage(Subscriber * sub)
{

if(sub->takeNextData((void*)&sample, &sample_info))
{

if(sample_info.sampleKind == ALIVE)
{

std::cout << "New message: " << sample.msg() << std::endl;
}

}
}

HelloWorld sample; //Storage for incoming messages

SampleInfo_t sample_info; //Auxiliary structure with meta-data on the message
};

20 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

7.2 Configuration

eProsima Fast RTPS entities can be configured through the code or XML profiles. This section will show both
alternatives.

7.2.1 Participant configuration

The Participant can be configured via the ParticipantAttributes structure. createParticipant
function accepts an instance of this structure.

ParticipantAttributes participant_attr;

participant_attr.rtps.setName("my_participant");
participant_attr.rtps.builtin.domainId = 80;

Participant *participant = Domain::createParticipant(participant_attr);

Also, it can be configured through an XML profile. createParticipant function accepts a name of an XML
profile.

Participant *participant = Domain::createParticipant("participant_xml_profile");

About XML profiles you can learn more in XML profiles. This is an example of a participant XML profile.

<participant profile_name="participant_xml_conf_profile">
<rtps>

<name>my_participant</name>
<builtin>

<domainId>80</domainId>
</builtin>

</rtps>
</participant>

We will now go over the most common configuration options.

• Participant name: the name of the Participant forms part of the meta-data of the RTPS protocol.

C++

participant_attr.rtps.setName("my_participant");

XML

<participant profile_name="participant_xml_conf_name_profile">
<rtps>

<name>my_participant</name>
</rtps>

</participant>

• DomainId: Publishers and Subscribers can only talk to each other if their Participants belong to the same
DomainId.

7.2. Configuration 21

FastRTPS Documentation, Release 1.9.3

C++

participant_attr.rtps.builtin.domainId = 80;

XML

<participant profile_name="participant_xml_conf_domain_profile">
<rtps>

<builtin>
<domainId>80</domainId>

</builtin>
</rtps>

</participant>

• Mutation Tries: The reader’s physical port could be already bound. In that case, the Participant uses its
mutation_tries attribute to determine how many different ports must try before failing. These mutated ports will
modify the locator’s information. By default, its value is 100.

C++

participant_attr.rtps.builtin.mutation_tries = 55;

XML

<participant profile_name="participant_xml_conf_mutation_tries_profile">
<rtps>

<builtin>
<mutation_tries>55</mutation_tries>

</builtin>
</rtps>

</participant>

7.2.2 Publisher and Subscriber configuration

The Publisher can be configured via the PublisherAttributes structure and createPublisher function
accepts an instance of this structure. The Subscriber can be configured via the SubscriberAttributes
structure and createSubscriber function accepts an instance of this structure.

PublisherAttributes publisher_attr;
Publisher *publisher = Domain::createPublisher(participant, publisher_attr);

SubscriberAttributes subscriber_attr;
Subscriber *subscriber = Domain::createSubscriber(participant, subscriber_attr);

Also, these entities can be configured through an XML profile. createPublisher and createSubscriber
functions accept the name of an XML profile.

Publisher *publisher = Domain::createPublisher(participant, "publisher_xml_profile");
Subscriber *subscriber = Domain::createSubscriber(participant, "subscriber_xml_profile
→˓");

We will now go over the most common configuration options.

22 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

Topic information

The topic name and data type are used as meta-data to determine whether Publishers and Subscribers can exchange
messages.

C++

publisher_attr.topic.topicDataType = "HelloWorldType";
publisher_attr.topic.topicName = "HelloWorldTopic";

subscriber_attr.topic.topicDataType = "HelloWorldType";
subscriber_attr.topic.topicName = "HelloWorldTopic";

XML

<publisher profile_name="publisher_xml_conf_topic_profile">
<topic>

<dataType>HelloWorldType</dataType>
<name>HelloWorldTopic</name>

</topic>
</publisher>

<subscriber profile_name="subscriber_xml_conf_topic_profile">
<topic>

<dataType>HelloWorldType</dataType>
<name>HelloWorldTopic</name>

</topic>
</subscriber>

Reliability

The RTPS standard defines two behavior modes for message delivery:

• Best-Effort (default): Messages are sent without arrival confirmation from the receiver (subscriber). It is fast,
but messages can be lost.

• Reliable: The sender agent (publisher) expects arrival confirmation from the receiver (subscriber). It is slower
but prevents data loss.

7.2. Configuration 23

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.qos.m_reliability.kind = RELIABLE_RELIABILITY_QOS;

subscriber_attr.qos.m_reliability.kind = BEST_EFFORT_RELIABILITY_QOS;

XML

<publisher profile_name="publisher_xml_conf_reliability_profile">
<qos>

<reliability>
<kind>RELIABLE</kind>

</reliability>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_reliability_profile">
<qos>

<reliability>
<kind>BEST_EFFORT</kind>

</reliability>
</qos>

</subscriber>

Some reliability combinations make a publisher and a subscriber incompatible and unable to talk to each other. Next
table shows the incompatibilities.

Publisher \ Subscriber Best Effort Reliable
Best Effort X
Reliable X X

History

There are two policies for sample storage:

• Keep-All: Store all samples in memory.

• Keep-Last (Default): Store samples up to a maximum depth. When this limit is reached, they start to become
overwritten.

24 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.topic.historyQos.kind = KEEP_ALL_HISTORY_QOS;

subscriber_attr.topic.historyQos.kind = KEEP_LAST_HISTORY_QOS;
subscriber_attr.topic.historyQos.depth = 5;

XML

<publisher profile_name="publisher_xml_conf_history_profile">
<topic>

<historyQos>
<kind>KEEP_ALL</kind>

</historyQos>
</topic>

</publisher>

<subscriber profile_name="subscriber_xml_conf_history_profile">
<topic>

<historyQos>
<kind>KEEP_LAST</kind>
<depth>5</depth>

</historyQos>
</topic>

</subscriber>

Durability

Durability configuration of the endpoint defines how it behaves regarding samples that existed on the topic before a
subscriber joins

• Volatile: Past samples are ignored, a joining subscriber receives samples generated after the moment it matches.

• Transient Local (Default): When a new subscriber joins, its History is filled with past samples.

• Transient: When a new subscriber joins, its History is filled with past samples, which are stored on persistent
storage (see Persistence).

7.2. Configuration 25

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.qos.m_durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;

subscriber_attr.qos.m_durability.kind = VOLATILE_DURABILITY_QOS;

XML

<publisher profile_name="publisher_xml_conf_durability_profile">
<qos>

<durability>
<kind>TRANSIENT_LOCAL</kind>

</durability>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_durability_profile">
<qos>

<durability>
<kind>VOLATILE</kind>

</durability>
</qos>

</subscriber>

Deadline

The deadline QoS raises an alarm when the frequency of new samples falls below a certain threshold. It is useful for
cases where data is expected to be updated periodically, requiring that each instance is updated periodically for topics
with key.

On the publishing side, the deadline QoS defines the maximum period in which the application is expected to supply
a new sample. On the subscribing side, it defines the maximum period in which new samples should be received. For
publishers and subscribers to match, the offered deadline period must be less than or equal to the requested deadline
period, otherwise the entities are considered to be incompatible.

26 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.qos.m_deadline.period = 1;

subscriber_attr.qos.m_deadline.period = 1;

XML

<publisher profile_name="publisher_xml_conf_deadline_profile">
<qos>

<deadline>
<period>

<sec>1</sec>
</period>

</deadline>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_deadline_profile">
<qos>

<deadline>
<period>

<sec>1</sec>
</period>

</deadline>
</qos>

</subscriber>

Lifespan

Specifies the maximum duration of validity of the data written by the publisher. When the lifespan period expires, data
is removed from the history.

7.2. Configuration 27

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.qos.m_lifespan.duration = 1;

subscriber_attr.qos.m_lifespan.duration = 1;

XML

<publisher profile_name="publisher_xml_conf_lifespan_profile">
<qos>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_lifespan_profile">
<qos>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>
</qos>

</subscriber>

Liveliness

Liveliness is a quality of service that can be used to ensure that particular entities on the network are “alive”. There are
different settings that allow distinguishing between applications where data is updated periodically and applications
where data is changed sporadically. It also allows customizing the application regarding the kind of failures that should
be detected by the liveliness mechanism.

The AUTOMATIC liveliness kind is suitable for applications that only need to detect whether a remote application
is still running. Therefore, as long as the local process where the participant is running and the link connecting it to
remote participants exists, the entities within the remote participant will be considered alive.

The two manual settings require that liveliness is asserted periodically on the publishing side to consider that remote
entities are alive. Liveliness can be asserted explicitly by calling the assert_liveliness operations on the publisher, or
implicitly by writing data. The MANUAL_BY_PARTICIPANT setting only requires that one entity in the publishing
side asserts liveliness to deduce that all other entities within that participant are also alive. The MANUAL_BY_TOPIC
mode is more restrictive and requires that at least one instance within the publisher is asserted to consider that the
publisher is alive.

Besides the liveliness kind, two additional parameters allow defining the application behavior. They are all listed in
the table below.

28 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

Name Description Values Default
<kind> Specifies how to manage liveliness. AUTOMATIC,

MANUAL_BY_TOPIC,
MANUAL_BY_TOPIC

AUTOMATIC

<lease_duration>Amount of time to wait since the last message from a writer to
consider that it is no longer alive.

DurationType c_TimeInfinite

<announcement_period>Amount of time between consecutive liveliness messages sent
by the publisher. Only used for AUTOMATIC and MAN-
UAL_BY_PARTICIPANT liveliness kinds.

DurationType c_TimeInfinite

C++

publisher_attr.qos.m_liveliness.announcement_period = 0.5;
publisher_attr.qos.m_liveliness.lease_duration = 1;
publisher_attr.qos.m_liveliness.kind = AUTOMATIC_LIVELINESS_QOS;

subscriber_attr.qos.m_liveliness.lease_duration = 1;
subscriber_attr.qos.m_liveliness.kind = AUTOMATIC_LIVELINESS_QOS;

XML

<publisher profile_name="publisher_xml_conf_liveliness_profile">
<qos>

<liveliness>
<announcement_period>
<sec>0</sec>
<nanosec>1000000</nanosec>

</announcement_period>
<lease_duration>
<sec>1</sec>

</lease_duration>
<kind>AUTOMATIC</kind>

</liveliness>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_liveliness_profile">
<qos>

<liveliness>
<lease_duration>

<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>

</liveliness>
</qos>

</subscriber>

Resource limits

Allow controlling the maximum size of the History and other resources.

7.2. Configuration 29

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.topic.resourceLimitsQos.max_samples = 200;

subscriber_attr.topic.resourceLimitsQos.max_samples = 200;

XML

<publisher profile_name="publisher_xml_conf_resource_limits_profile">
<topic>

<resourceLimitsQos>
<max_samples>200</max_samples>

</resourceLimitsQos>
</topic>

</publisher>

<subscriber profile_name="subscriber_xml_conf_resource_limits_profile">
<topic>

<resourceLimitsQos>
<max_samples>200</max_samples>

</resourceLimitsQos>
</topic>

</subscriber>

Disable positive acks

This is an additional QoS that allows reducing network traffic when strict reliable communication is not required and
bandwidth is limited. It consists in changing the default behavior by which positive acks are sent from readers to
writers. Instead, only negative acks will be sent when a reader is missing a sample, but writers will keep data for a
sufficient keep duration before considering it as acknowledged. A writer and a reader are incompatible (i.e. they will
not match) if the latter is using this QoS but the former is not.

30 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

C++

publisher_attr.qos.m_disablePositiveACKs.enabled = true;
publisher_attr.qos.m_disablePositiveACKs.duration = 1;

subscriber_attr.qos.m_disablePositiveACKs.enabled = true;

XML

<publisher profile_name="publisher_xml_conf_disable_positive_acks_profile">
<qos>

<disablePositiveAcks>
<enabled>true</enabled>
<duration>

<sec>1</sec>
</duration>

</disablePositiveAcks>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_disable_positive_acks_profile">
<qos>

<disablePositiveAcks>
<enabled>true</enabled>

</disablePositiveAcks>
</qos>

</subscriber>

Unicast locators

They are network endpoints where the entity will receive data. For more information about the network, see Trans-
ports. Publishers and subscribers inherit unicast locators from the participant. You can set a different set of locators
through this attribute.

7.2. Configuration 31

FastRTPS Documentation, Release 1.9.3

C++

Locator_t new_locator;
new_locator.port = 7800;

subscriber_attr.unicastLocatorList.push_back(new_locator);

publisher_attr.unicastLocatorList.push_back(new_locator);

XML

<publisher profile_name="publisher_xml_conf_unicast_locators_profile">
<unicastLocatorList>

<locator>
<udpv4>

<port>7800</port>
</udpv4>

</locator>
</unicastLocatorList>

</publisher>

<subscriber profile_name="subscriber_xml_conf_unicast_locators_profile">
<unicastLocatorList>

<locator>
<udpv4>

<port>7800</port>
</udpv4>

</locator>
</unicastLocatorList>

</subscriber>

Multicast locators

They are network endpoints where the entity will receive data. For more information about network configuration, see
Transports. By default publishers and subscribers don’t use any multicast locator. This attribute is useful when you
have a lot of entities and you want to reduce the network usage.

32 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.9.3

C++

Locator_t new_locator;

IPLocator::setIPv4(new_locator, "239.255.0.4");
new_locator.port = 7900;

subscriber_attr.multicastLocatorList.push_back(new_locator);

publisher_attr.multicastLocatorList.push_back(new_locator);

XML

<publisher profile_name="publisher_xml_conf_multicast_locators_profile">
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
<port>7900</port>

</udpv4>
</locator>

</multicastLocatorList>
</publisher>

<subscriber profile_name="subscriber_xml_conf_multicast_locators_profile">
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
<port>7900</port>

</udpv4>
</locator>

</multicastLocatorList>
</subscriber>

7.3 Additional Concepts

7.3.1 Using message meta-data

When a message is taken from the Subscriber, an auxiliary SampleInfo_t structure instance is also returned.

7.3. Additional Concepts 33

FastRTPS Documentation, Release 1.9.3

Static types

HelloWorld sample;
SampleInfo_t sample_info;
subscriber->takeNextData((void*)&sample, &sample_info);

Dynamic types

// input_type is an instance of DynamicPubSubType of out current dynamic type
DynamicPubSubType *pst = dynamic_cast<DynamicPubSubType*>(input_type);
DynamicData *sample = DynamicDataFactory::get_instance()->create_data(pst->
→˓GetDynamicType());
subscriber->takeNextData(sample, &sample_info);

This SampleInfo_t structure contains meta-data on the incoming message:

• sampleKind: type of the sample, as defined by the RTPS Standard. Healthy messages from a topic are always
ALIVE.

• WriterGUID: Signature of the sender (Publisher) the message comes from.

• OwnershipStrength: When several senders are writing the same data, this field can be used to determine which
data is more reliable.

• SourceTimestamp: A timestamp on the sender side that indicates the moment the sample was encapsulated and
sent.

This meta-data can be used to implement filters:

if((sample_info.sampleKind == ALIVE) & (sample_info.ownershipStrength > 25))
{

//Process data
}

7.3.2 Defining callbacks

As we saw in the example, both the Publisher and Subscriber have a set of callbacks you can use in your
application. These callbacks are to be implemented within classes that derive from SubscriberListener or
PublisherListener. The following table gathers information about the possible callbacks that can be imple-
mented in both cases:

Callback Publisher Subscriber
onNewDataMessage N Y
onSubscriptionMatched N Y
onPublicationMatched Y N
on_offered_deadline_missed Y N
on_requested_deadline_missed N Y
on_liveliness_lost Y N
on_liveliness_changed N Y

34 Chapter 7. Publisher-Subscriber Layer

CHAPTER 8

Writer-Reader Layer

The lower level Writer-Reader Layer of eprosima Fast RTPS provides a raw implementation of the RTPS protocol. It
provides more control over the internals of the protocol than the Publisher-Subscriber layer. Advanced users can make
use of this layer directly to gain more control over the functionality of the library.

8.1 Relation to the Publisher-Subscriber Layer

Elements of this layer map one-to-one with elements from the Publisher-Subscriber Layer, with a few additions. The
following table shows the name correspondence between layers:

Publisher-Subscriber Layer Writer-Reader Layer
Domain RTPSDomain
Participant RTPSParticipant
Publisher RTPSWriter
Subscriber RTPSReader

8.2 How to use the Writer-Reader Layer

We will now go over the use of the Writer-Reader Layer like we did with the Publish-Subscriber one, explaining the
new features it presents.

We recommend you to look at the two examples of how to use this layer the distribution comes with while reading this
section. They are located in examples/RTPSTest_as_socket and in examples/RTPSTest_registered

8.2.1 Managing the Participant

To create a RTPSParticipant, the process is very similar to the one shown in the Publisher-Subscriber layer.

35

FastRTPS Documentation, Release 1.9.3

RTPSParticipantAttributes participant_attr;
participant_attr.setName("participant");
RTPSParticipant* participant = RTPSDomain::createParticipant(participant_attr);

The RTPSParticipantAttributes structure is equivalent to the rtps member of
ParticipantAttributes field in the Publisher-Subscriber Layer, so you can configure your
RTPSParticipant the same way as before:

RTPSParticipantAttributes participant_attr;
participant_attr.setName("my_participant");
//etc.

8.2.2 Managing the Writers and Readers

As the RTPS standard specifies, Writers and Readers are always associated with a History element. In the Publisher-
Subscriber Layer, its creation and management is hidden, but in the Writer-Reader Layer, you have full control over
its creation and configuration.

Writers are configured with a WriterAttributes structure. They also need a WriterHistory which is con-
figured with a HistoryAttributes structure.

HistoryAttributes history_attr;
WriterHistory* history = new WriterHistory(history_attr);
WriterAttributes writer_attr;
RTPSWriter* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, history);

The creation of a Reader is similar. Note that in this case, you can provide a ReaderListener instance that
implements your callbacks:

class MyReaderListener : public ReaderListener{};
MyReaderListener listener;
HistoryAttributes history_attr;
ReaderHistory* history = new ReaderHistory(history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, history, &
→˓listener);

8.2.3 Using the History to Send and Receive Data

In the RTPS Protocol, Readers and Writers save the data about a topic in their associated History. Each piece of
data is represented by a Change, which eprosima Fast RTPS implements as CacheChange_t. Changes are always
managed by the History. As a user, the procedure for interacting with the History is always the same:

1. Request a CacheChange_t from the History

2. Use it

3. Release it

You can interact with the History of the Writer to send data. A callback that returns the maximum number of payload
bytes is required:

//Request a change from the history
CacheChange_t* change = writer->new_change([]() -> uint32_t { return 255;}, ALIVE);
//Write serialized data into the change

(continues on next page)

36 Chapter 8. Writer-Reader Layer

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

change->serializedPayload.length = sprintf((char*) change->serializedPayload.data,
→˓"My example string %d", 2)+1;
//Insert change back into the history. The Writer takes care of the rest.
history->add_change(change);

If your topic data type has several fields, you will have to provide functions to serialize and deserialize your data in
and out of the CacheChange_t. FastRTPSGen does this for you.

You can receive data from within a ReaderListener callback method as we did in the Publisher-Subscriber Layer:

class MyReaderListener: public ReaderListener
{

public:

MyReaderListener(){}

~MyReaderListener(){}

void onNewCacheChangeAdded(RTPSReader* reader,const CacheChange_t* const
→˓change)

{
// The incoming message is enclosed within the `change` in the function

→˓parameters
printf("%s\n",change->serializedPayload.data);
// Once done, remove the change
reader->getHistory()->remove_change((CacheChange_t*)change);

}
};

8.3 Configuring Readers and Writers

One of the benefits of using the Writer-Reader layer is that it provides new configuration possibilities while maintaining
the options from the Publisher-Subscriber layer (see Configuration). For example, you can set a Writer or a Reader as
a Reliable or Best-Effort endpoint as previously:

writer_attr.endpoint.reliabilityKind = BEST_EFFORT;

8.3.1 Setting the data durability kind

The Durability parameter defines the behavior of the Writer regarding samples already sent when a new Reader
matches. eProsima Fast RTPS offers three Durability options:

• VOLATILE (default): Messages are discarded as they are sent. If a new Reader matches after message n, it will
start received from message n+1.

• TRANSIENT_LOCAL: The Writer saves a record of the last k messages it has sent. If a new reader matches
after message n, it will start receiving from message n-k

• TRANSIENT: As TRANSIENT_LOCAL, but the record of messages will be saved to persistent storage, so it
will be available if the writer is destroyed and recreated, or in case of an application crash (see Persistence)

To choose your preferred option:

8.3. Configuring Readers and Writers 37

FastRTPS Documentation, Release 1.9.3

writer_attr.endpoint.durabilityKind = TRANSIENT_LOCAL;

Because in the Writer-Reader layer you have control over the History, in TRANSIENT_LOCAL and TRANSIENT
modes the Writer sends all changes you have not explicitly released from the History.

8.4 Configuring the History

The History has its own configuration structure, the HistoryAttributes.

8.4.1 Changing the maximum size of the payload

You can choose the maximum size of the Payload that can go into a CacheChange_t. Be sure to choose a size that
allows it to hold the biggest possible piece of data:

history_attr.payloadMaxSize = 250; //Defaults to 500 bytes

8.4.2 Changing the size of the History

You can specify a maximum amount of changes for the History to hold and an initial amount of allocated changes:

history_attr.initialReservedCaches = 250; //Defaults to 500
history_attr.maximumReservedCaches = 500; //Defaults to 0 = Unlimited Changes

When the initial amount of reserved changes is lower than the maximum, the History will allocate more changes as
they are needed until it reaches the maximum size.

38 Chapter 8. Writer-Reader Layer

CHAPTER 9

Advanced Functionalities

This section covers slightly more advanced, but useful features that enrich your implementation.

9.1 Topics and Keys

The RTPS standard contemplates the use of keys to define multiple data sources/sinks within a single topic.

There are three ways of implementing keys into your topic:

• Defining a @Key field in the IDL file when using FastRTPSGen (see the examples that come with the distribu-
tion).

• Manually implementing and using a getKey() method.

• Adding the attribute Key to the member and its parents when using dynamic types (see Dynamic Topic Types).

Publishers and Subscribers using topics with keys must be configured to use them, otherwise, they will have no effect:

C++

// Publisher-Subscriber Layer configuration.
publisher_attr.topic.topicKind = WITH_KEY;

XML

<publisher profile_name="publisher_profile_qos_key">
<topic>

<kind>WITH_KEY</kind>
</topic>

</publisher>

The RTPS Layer requires you to call the getKey() method manually within your callbacks.

39

FastRTPS Documentation, Release 1.9.3

You can tweak the History to accommodate data from multiple keys based on your current configuration. This consist
of defining a maximum number of data sinks and a maximum size for each sink:

C++

// Set the subscriber to remember and store up to 3 different keys.
subscriber_attr.topic.resourceLimitsQos.max_instances = 3;
// Hold a maximum of 20 samples per key.
subscriber_attr.topic.resourceLimitsQos.max_samples_per_instance = 20;

XML

<subscriber profile_name="subscriber_profile_qos_resourcelimit">
<topic>

<resourceLimitsQos>
<max_instances>3</max_instances>
<max_samples_per_instance>20</max_samples_per_instance>

</resourceLimitsQos>
</topic>

</subscriber>

Note that your History must be big enough to accommodate the maximum number of samples for each key. eProsima
Fast RTPS will notify you if your History is too small.

9.2 Intra-process delivery

eProsima Fast RTPS allows to speed up Intra-process communications by avoiding any copy operation involved with
the transport layer. This feature is disabled by default and must be enable using XML profiles. Currently the following
options are available:

• INTRAPROCESS_OFF. Default value, the feature is disabled.

• INTRAPROCESS_USER_DATA_ONLY. Discovery metadata keeps using ordinary transport.

• INTRAPROCESS_FULL. Both user data and discovery metadata using Intra-process delivery.

9.3 Transports

eProsima Fast RTPS implements an architecture of pluggable transports. Current version implements four transports:
UDPv4, UDPv6, TCPv4 and TCPv6. By default, when a Participant is created, one built-in UDPv4 transport is
configured. You can add custom transports using the attribute rtps.userTransports.

40 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

//Create a descriptor for the new transport.
auto custom_transport = std::make_shared<UDPv4TransportDescriptor>();

custom_transport->sendBufferSize = 9216;
custom_transport->receiveBufferSize = 9216;

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(custom_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>my_transport</transport_id>
<type>UDPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="my_transport">
<rtps>

<userTransports>
<transport_id>my_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

All Transport configuration options can be found in the section Transport descriptors.

9.3.1 TCP Transport

Unlike UDP, TCP transport is connection oriented and for that Fast-RTPS must establish a TCP connection before
sending the RTPS messages. Therefore TCP transport can have two behaviors, acting as a server (TCP Server) or as
a client (TCP Client). The server opens a TCP port listening for incoming connections and the client tries to connect
to the server. The server and the client concepts are independent from the RTPS concepts: Publisher, Subscriber,
Writer, and Reader. Any of them can operate as a TCP Server or a TCP Client because these entities are used only
to establish the TCP connection and the RTPS protocol works over it.

To use TCP transports you need to define some more configurations:

You must create a new TCP transport descriptor, for example TCPv4. This transport descriptor has a field named
listening_ports that indicates to Fast-RTPS in which physical TCP ports our participant will listen for input
connections. If omitted, the participant will not be able to receive incoming connections but will be able to connect to
other participants that have configured their listening ports. The transport must be added to the userTransports
list of the participant attributes. The field wan_addr can be used to allow incoming connections using the public IP
in a WAN environment or the Internet. See WAN or Internet Communication over TCP/IPv4 for more information
about how to configure a TCP Transport to allow or connect to WAN connections.

9.3. Transports 41

FastRTPS Documentation, Release 1.9.3

C++

//Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp_transport</transport_id>
<type>TCPv4</type>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>

<userTransports>
<transport_id>tcp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

To configure the participant to connect to another node through TCP, you must configure and add a Locator to its
initialPeersList that points to the remote listening port.

42 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

auto tcp2_transport = std::make_shared<TCPv4TransportDescriptor>();

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peer_locator);

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp2_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp2_transport</transport_id>
<type>TCPv4</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>

<userTransports>
<transport_id>tcp2_transport</transport_id>

</userTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

A TCP version of helloworld example can be found in this link.

WAN or Internet Communication over TCP/IPv4

Fast-RTPS is able to connect through the Internet or other WAN networks when configured properly. To achieve
this kind of scenarios, the involved network devices such as routers and firewalls should add the rules to allow the
communication.

For example, to allow incoming connections through our NAT, Fast-RTPS must be configured as a TCP Server
listening to incoming TCP connections. To allow incoming connections through a WAN, the TCP descriptor associated

9.3. Transports 43

https://github.com/eProsima/Fast-RTPS/tree/master/examples/C%2B%2B/HelloWorldExampleTCP

FastRTPS Documentation, Release 1.9.3

must indicate its public IP through its field wan_addr.

C++

//Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp_transport</transport_id>
<type>TCPv4</type>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>

<userTransports>
<transport_id>tcp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

In this case, configuring the router (which public IP is 80.80.99.45) is mandatory to allow the incoming traffic to
reach the TCP Server. Typically a NAT routing with the listening_port 5100 to our machine is enough. Any
existing firewall should be configured as well.

In the client side, it is needed to specify the public IP of the TCP Server with its listening_port as
initial_peer.

44 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

auto tcp2_transport = std::make_shared<TCPv4TransportDescriptor>();

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peer_locator);

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp2_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp2_transport</transport_id>
<type>TCPv4</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>

<userTransports>
<transport_id>tcp2_transport</transport_id>

</userTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

The combination of the above configurations in both TCP Server and TCP Client allows a scenario similar to the
represented by the following image.

9.3. Transports 45

FastRTPS Documentation, Release 1.9.3

IPLocator

IPLocator is an auxiliary static class that offers methods to ease the management of IP based locators, as UDP or TCP.
In TCP, the port field of the locator is divided into physical and logical port. The physical port is the port used by
the network device, the real port that the operating system understands. The logical port can be seen as RTPS port,
or UDP’s equivalent port (physical ports of UDP, are logical ports in TCP). Logical ports normally are not necessary
to manage explicitly, but you can do it through IPLocator class. Physical ports instead, must be set to explicitly use
certain ports, to allow the communication through a NAT, for example.

Locator_t locator;
// Get & Set Physical Port
uint16_t physical_port = IPLocator::getPhysicalPort(locator);
IPLocator::setPhysicalPort(locator, 5555);

// Get & Set Logical Port
uint16_t logical_port = IPLocator::getLogicalPort(locator);
IPLocator::setLogicalPort(locator, 7400);

// Set WAN Address
IPLocator::setWan(locator, "80.88.75.55");

NOTE

TCP doesn’t support multicast scenarios, so you must plan carefully your network architecture.

TLS over TCP

Fast-RTPS allows configuring a TCP Transport to use TLS (Transport Layer Security) by setting up TCP Server and
TCP Client properly.

TCP Server

46 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

using TLSOptions = TCPTransportDescriptor::TLSConfig::TLSOptions;
tls_transport->apply_security = true;
tls_transport->tls_config.password = "test";
tls_transport->tls_config.cert_chain_file = "server.pem";
tls_transport->tls_config.private_key_file = "serverkey.pem";
tls_transport->tls_config.tmp_dh_file = "dh2048.pem";
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tls_transport_server</transport_id>
<type>TCPv4</type>
<tls>

<password>test</password>
<private_key_file>serverkey.pem</private_key_file>
<cert_chain_file>server.pem</cert_chain_file>
<tmp_dh_file>dh2048.pem</tmp_dh_file>
<options>

<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSLV2</option>

</options>
</tls>

</transport_descriptor>
</transport_descriptors>

TCP Client

9.3. Transports 47

FastRTPS Documentation, Release 1.9.3

C++

auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

using TLSOptions = TCPTransportDescriptor::TLSConfig::TLSOptions;
using TLSVerifyMode = TCPTransportDescriptor::TLSConfig::TLSVerifyMode;
tls_transport->apply_security = true;
tls_transport->tls_config.verify_file = "ca.pem";
tls_transport->tls_config.verify_mode = TLSVerifyMode::VERIFY_PEER;
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tls_transport_client</transport_id>
<type>TCPv4</type>
<tls>

<verify_file>ca.pem</verify_file>
<verify_mode>

<verify>VERIFY_PEER</verify>
</verify_mode>
<options>

<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSLV2</option>

</options>
</tls>

</transport_descriptor>
</transport_descriptors>

More TLS related options can be found in the section Transport descriptors.

9.3.2 Listening locators

eProsima Fast RTPS divides listening locators into four categories:

• Metatraffic Multicast Locators: these locators are used to receive metatraffic information using multicast. They
usually are used by built-in endpoints, like the discovery of built-in endpoints. You can set your own locators
using attribute rtps.builtin.metatrafficMulticastLocatorList.

// This locator will open a socket to listen network messages on UDPv4 port 22222
→˓over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0 , 1);
locator.port = 22222;

participant_attr.rtps.builtin.metatrafficMulticastLocatorList.push_back(locator);

• Metatraffic Unicast Locators: these locators are used to receive metatraffic information using unicast. They
usually are used by built-in endpoints, like the discovery of built-in endpoints. You can set your own locators
using attribute rtps.builtin.metatrafficUnicastLocatorList.

48 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

// This locator will open a socket to listen network messages on UDPv4 port 22223
→˓over network interface 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0 , 1);
locator.port = 22223;

participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(locator);

• User Multicast Locators: these locators are used to receive user information using multicast. They are used by
user endpoints. You can set your own locators using attribute rtps.defaultMulticastLocatorList.

// This locator will open a socket to listen network messages on UDPv4 port 22224
→˓over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0 , 1);
locator.port = 22224;

participant_attr.rtps.defaultMulticastLocatorList.push_back(locator);

• User Unicast Locators: these locators are used to receive user information using unicast. They are used by user
endpoints. You can set your own locators using attributes rtps.defaultUnicastLocatorList.

// This locator will open a socket to listen network messages on UDPv4 port 22225
→˓over network interface 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0 , 1);
locator.port = 22225;

participant_attr.rtps.defaultUnicastLocatorList.push_back(locator);

By default eProsima Fast RTPS calculates the listening locators for the built-in UDPv4 network transport using well-
known ports. These well-known ports are calculated using the following predefined rules:

Table 1: Ports used
Traffic type Well-known port expression
Metatraffic multicast PB + DG * domainId + offsetd0
Metatraffic unicast PB + DG * domainId + offsetd1 + PG * participantId
User multicast PB + DG * domainId + offsetd2
User unicast PB + DG * domainId + offsetd3 + PG * participantId

These predefined rules use some values explained here:

• DG: DomainId Gain. You can set this value using attribute rtps.port.domainIDGain. The default value
is 250.

• PG: ParticipantId Gain. You can set this value using attribute rtps.port.participantIDGain. The
default value is 2.

• PB: Port Base number. You can set this value using attribute rtps.port.portBase. The default value is
7400.

• offsetd0, offsetd1, offsetd2, offsetd3: Additional offsets. You can set these values using attributes rtps.
port.offsetdN. Default values are: offsetd0 = 0, offsetd1 = 10, offsetd2 = 1, offsetd3
= 11.

Both UDP and TCP unicast locators support to have a null address. In that case, eProsima Fast RTPS understands to
get local network addresses and use them.

9.3. Transports 49

FastRTPS Documentation, Release 1.9.3

Both UDP and TCP locators support to have a zero port. In that case, eProsima Fast RTPS understands to calculate
well-known port for that type of traffic.

9.3.3 Initial peers

These locators are used to know where to send initial discovery network messages. You can set your own locators
using attribute rtps.builtin.initialPeersList. By default eProsima Fast RTPS uses as initial peers the
Metatraffic Multicast Locators.

// This locator configures as initial peer the UDPv4 address 192.168.0.2:7600.
// Initial discovery network messages will send to this UDPv4 address.
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, "192.168.0.2");
locator.port = 7600;

participant_attr.rtps.builtin.initialPeersList.push_back(locator);

9.3.4 Whitelist Interfaces

There could be situations where you want to block some network interfaces to avoid connections or sending data
through them. This can be managed using the field interface whitelist in the transport descriptors, and with them, you
can set the interfaces you want to use to send or receive packets. The values on this list should match the IPs of your
machine in that networks. For example:

C++

UDPv4TransportDescriptor descriptor;
descriptor.interfaceWhiteList.emplace_back("127.0.0.1");

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>CustomTransport</transport_id>
<type>UDPv4</type>
<interfaceWhiteList>

<address>127.0.0.1</address>
</interfaceWhiteList>

</transport_descriptor>
<transport_descriptor>

9.3.5 Tips

Disabling all multicast traffic

50 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

// Metatraffic Multicast Locator List will be empty.
// Metatraffic Unicast Locator List will contain one locator, with null address and
→˓null port.
// Then eProsima Fast RTPS will use all network interfaces to receive network
→˓messages using a well-known port.
Locator_t default_unicast_locator;
participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(default_
→˓unicast_locator);

// Initial peer will be UDPv4 addresss 192.168.0.1. The port will be a well-known
→˓port.
// Initial discovery network messages will be sent to this UDPv4 address.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, 192, 168, 0, 1);
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peer);

XML

<participant profile_name="disable_multicast" is_default_profile="true">
<rtps>

<builtin>
<metatrafficUnicastLocatorList>

<locator/>
</metatrafficUnicastLocatorList>
<initialPeersList>

<locator>
<udpv4>

<address>192.168.0.1</address>
</udpv4>

</locator>
</initialPeersList>

</builtin>
</rtps>

</participant>

Non-blocking write on sockets

For UDP transport, it is possible to configure whether to use non-blocking write calls on the sockets.

9.3. Transports 51

FastRTPS Documentation, Release 1.9.3

C++

//Create a descriptor for the new transport.
auto non_blocking_UDP_transport = std::make_shared<UDPv4TransportDescriptor>();
non_blocking_UDP_transport->non_blocking_send = false;

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(non_blocking_UDP_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>non_blocking_transport</transport_id>
<type>UDPv4</type>
<non_blocking_send>false</non_blocking_send>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="non_blocking_transport">
<rtps>

<userTransports>
<transport_id>non_blocking_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

XML Configuration

The XML profiles section contains the full information about how to setup Fast RTPS through an XML file.

9.4 Flow Controllers

eProsima Fast RTPS supports user configurable flow controllers on a Publisher and Participant level. These con-
trollers can be used to limit the amount of data to be sent under certain conditions depending on the kind of controller
implemented.

The current release implement throughput controllers, which can be used to limit the total message throughput to be
sent over the network per time measurement unit. In order to use them, a descriptor must be passed into the Participant
or Publisher Attributes.

52 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

// Limit to 300kb per second.
ThroughputControllerDescriptor slowPublisherThroughputController{300000, 1000};
publisher_attr.throughputController = slowPublisherThroughputController;

XML

<publisher profile_name="publisher_profile_qos_flowcontroller">
<throughputController>

<bytesPerPeriod>300000</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>
</publisher>

In the Writer-Reader layer, the throughput controller is built-in and the descriptor defaults to infinite throughput. To
change the values:

WriterAttributes writer_attr;
writer_attr.throughputController.bytesPerPeriod = 300000; //300kb
writer_attr.throughputController.periodMillisecs = 1000; //1000ms

//CONF-QOS-PUBLISHMODE
// Allows fragmentation.
publisher_attr.qos.m_publishMode.kind = ASYNCHRONOUS_PUBLISH_MODE;

Note that specifying a throughput controller with a size smaller than the socket size can cause messages to never
become sent.

9.5 Sending large data

The default message size eProsima Fast RTPS uses is a conservative value of 65Kb. If your topic data is bigger, it
must be fragmented.

Fragmented messages are sent over multiple packets, as understood by the particular transport layer. To make this
possible, you must configure the Publisher to work in asynchronous mode.

C++

// Allows fragmentation.
publisher_attr.qos.m_publishMode.kind = ASYNCHRONOUS_PUBLISH_MODE;

XML

<publisher profile_name="publisher_profile_qos_publishmode">
<qos>

<publishMode>
<kind>ASYNCHRONOUS</kind>

</publishMode>
</qos>

</publisher>

9.5. Sending large data 53

FastRTPS Documentation, Release 1.9.3

In the Writer-Subscriber layer, you have to configure the Writer:

WriterAttributes write_attr;
write_attr.mode = ASYNCHRONOUS_WRITER; // Allows fragmentation

Note that in best-effort mode messages can be lost if you send big data too fast and the buffer is filled at a faster rate
than what the client can process messages. On the other hand, in reliable mode, the existence of a lot of data fragments
could decrease the frequency at which messages are received. If this happens, it can be resolved by increasing socket
buffers size, as described in Increasing socket buffers size. It can also help to set a lower Heartbeat period in reliable
mode, as stated in Tuning Reliable mode.

When you are sending large data, it is convenient to setup a flow controller to avoid a burst of messages in the network
and increase performance. See Flow Controllers

9.5.1 Example: Sending a unique large file

This is a proposed example of how should the user configure its application in order to achieve the best performance.
To make this example more tangible, it is going to be supposed that the file has a size of 9.9MB and the network in
which the publisher and the subscriber are operating has a bandwidth of 100MB/s

First of all, the asynchronous mode has to be activated in the publisher parameters. Then, a suitable reliability mode
has to be selected. In this case, it is important to make sure that all fragments of the message are received. The loss of
a fragment means the loss of the entire message, so it would be best to choose the reliable mode.

The default message size of this fragments using the UDPv4 transport has a value of 65Kb (which includes the space
reserved for the data and the message header). This means that the publisher would have to write at least about 1100
fragments.

This amount of fragment could slow down the transmission, so it could be interesting to decrease the heartbeat period
in order to increase the reactivity of the publisher.

Another important consideration is the addition of a flow controller. Without a flow controller, the publisher can
occupy the entire bandwidth. A reasonable flow controller for this application could be a limit of 5MB/s, which
represents only 5% of the total bandwidth. Anyway, these values are highly dependent on the specific application and
its desired behavior.

At last, there is another detail to have in mind: it is critical to check the size of the system UDP buffers. In Linux,
buffers can be enlarged with

sysctl -w net.ipv4.udp_mem="102400 873800 16777216"
sysctl -w net.core.netdev_max_backlog="30000"
sysctl -w net.core.rmem_max="16777216"
sysctl -w net.core.wmem_max="16777216"

9.5.2 Example: Video streaming

In this example, the target application transmits video between a publisher and a subscriber. This video will have a
resolution of 640x480 and a frequency of 50fps.

As in the previous example, since the application is sending data that requires fragmentation, the asynchronous mode
has to be activated in the publisher parameters.

In audio or video transmissions, sometimes is better to have a stable and high datarate feed than a 100% lossless
communication. Working with a frequency of 50Hz makes insignificant the loss of one or two samples each second.
Thus, for a higher performance, it can be appropriate to configure the reliability mode to best-effort.

54 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

9.6 Discovery

Fast RTPS provides a discovery mechanism that allows matching automatically publishers and subscribers. The dis-
covery mechanism is divided into two phases: Participant Discovery Phase and Endpoints Discovery Phase.

• Participant Discovery Phase (PDP) Before discovering any entity of a remote participant, both participants
have to meet between them. Participant Discovery Phase provides this step and is responsible for sending
periodic information about itself. To know how to configure where to send this periodic information, see
Initial peers. To know how to configure the announcement period and count, see Discovery Configuration.
When both participants are met, is the turn of Endpoints Discovery Phase.

• Endpoints Discovery Phase (EDP) This phase is responsible for sending entities information to the remote
participant. Also, it has to process the entities information of the remote participant and check which
entities can match between them.

There are several possible choices for the PDP strategy comprised into the enum DiscoveryProtocol_t:

• NONE which disables the PDP discovery. This setting is only compatible with the RTPSDomain layer. User
must manually match and unmatch RTPS endpoints using whatever external meta-information channel of its
choice.

• SIMPLE generates a standard participant with complete backward compatibility with any other RTPS imple-
mentation.

• CLIENT generates a client participant, which relies on a server to be notified of other clients presence. This
participant can create publishers and subscribers of any topic (static or dynamic) as ordinary participants do.

• SERVER generates a server participant, which receives, manages and spreads its linked clients metatraffic
assuring any single one is aware of the others. This participant can create publishers and subscribers of any
topic (static or dynamic) as ordinary participants do. Servers can link to other servers in order to share its clients
information.

• BACKUP generates a server participant with additional functionality over SERVER. Specifically, it uses a
database to backup its client information, so that if for whatever reason it disappears, it can be automatically
restored and continue spreading metatraffic to late joiners. A SERVER in the same scenario ought to collect
client information again, introducing a recovery delay.

For an extensive explanation of CLIENT, SERVER and BACKUP discovery strategies please refer to Discovery
Server documentation. The non-SIMPLE PDP strategies were devised to cope with several scenarios where the
standard PDP was unsuitable or plainly cannot be applied:

• a high number of endpoint entities which are continuously entering and exiting a large network.

• a network without multicasting capabilities.

Lack of multicast discovery mechanism is covered by providing one or several servers whose addresses are known
beforehand by any other participant (clients). These servers centralize the distribution of meta-information (participant
discovery information); thus, there is no longer need of participants exchanging discovery messages among them.

The basic mechanisms mimic to some extent the standard ones:

• as in the standard, clients send periodically announcements of its own discovery data. But the recipients of these
messages are only its servers, and only until servers don’t acknowledge clients announcements. Once a server
acknowledges a client announcement, there is a reliable PDP connection established, and the client becomes a
mere recipient of server’s discovery data.

• as in the standard, clients make periodical participant liveliness announcements (lease duration). But these
messages are only exchanged between a client and its servers. Thus:

• other participants (clients or servers) demise by lease duration would be reported by the linked servers.

9.6. Discovery 55

https://eprosima-discovery-server.readthedocs.io/en/latest/
https://eprosima-discovery-server.readthedocs.io/en/latest/

FastRTPS Documentation, Release 1.9.3

• server demises by lease duration would automatically trigger the client’s announcement until the server com-
munication is restored and acknowledges again client’s announcements.

9.6.1 Discovery related attributes

Discovery is managed from the RTPSDomain layer, thus all related attributes are constrained to this layer:

RTPSParticipantAttributes

• a GuidPrefix_t guidPrefix member specifies server’s identity. This member has only significance if discov-
ery_config.discoveryProtocol is SERVER or BACKUP. There is a ReadguidPrefix method to easily fill in this
member from a string formatted like “4D.49.47.55.45.4c.5f.42.41.52.52.4f” (note that each byte must be a valid
hexadecimal figure).

BuiltinAttributes

• All discovery related info is gathered in a DiscoverySettings discovery_config member.

• In order to receive client metatraffic, metatrafficUnicastLocatorList or metatrafficMulticastLocatorList must be
populated with the addresses that were given to the clients.

DiscoverySettings

• a DiscoveryProtocol_t discoveryProtocol member specifies the participant’s discovery kind. Already de-
scribed in discovery introduction.

By default, the discovery mechanism is enabled, but you can disable it through participant attributes.

C++

participant_attr.rtps.builtin.discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::NONE;

XML

<participant profile_name="participant_profile_qos_disable_discovery">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>NONE</discoveryProtocol>
</discovery_config>

</builtin>
</rtps>

</participant>

• a ignoreParticipantFlags member specifies participant filtering criteria to optimize discovery stage speed and
memory usage. This feature is only available for the SIMPLE discovery protocol. There are several options:

• FILTER_DIFFERENT_HOST all metadata from another host would be discarded.

• FILTER_DIFFERENT_PROCESS all metadata from another process on the same host would be discarded.

• FILTER_SAME_PROCESS all metadata from our own process would be discarded.

56 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

• FILTER_DIFFERENT_PROCESS | FILTER_SAME_PROCESS all metadata from our own host would be
discarded.

• use_XXX_EndpointDiscoveryProtocol flags. There is a specific section dealing with them (see Static End-
points Discovery).

• SimpleEDPAttributes m_simpleEDP. Gathers all attributes related to EDPSimple behavior. A participant may
create publishers, subscribers, both or neither. This class allows us to save the number of builtin endpoints to
those strictly necessary. For PDP SERVER the only possible choice is the default value that creates all builtin
endpoints because it must relay all clients EDP info.

C++

participant_attr.rtps.builtin.discovery_config.use_SIMPLE_
→˓EndpointDiscoveryProtocol = true;
participant_attr.rtps.builtin.discovery_config.m_simpleEDP.use_
→˓PublicationWriterANDSubscriptionReader = true;
participant_attr.rtps.builtin.discovery_config.m_simpleEDP.use_
→˓PublicationWriterANDSubscriptionReader = false;

XML

<participant profile_name="participant_profile_qos_discovery_edp">
<rtps>

<builtin>
<discovery_config>

<EDP>SIMPLE</EDP>
<simpleEDP>

<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>false</PUBREADER_SUBWRITER>

</simpleEDP>
</discovery_config>

</builtin>
</rtps>

</participant>

• a RemoteServerList_t m_DiscoveryServers lists the servers linked to the participant. This member has only
significance if discoveryProtocol is CLIENT, SERVER or BACKUP. These member elements are Remote-
ServerAttributes objects that identify each server and report where the servers can be reached:

• GuidPrefix_t guidPrefix is the RTPS unique identifier of the server participant we want to link
to. There is a ReadguidPrefix method to easily fill in this member from a string formatted like
“4D.49.47.55.45.4c.5f.42.41.52.52.4f” (note that each octet must be a valid hexadecimal figure).

• metatrafficUnicastLocatorList and metatrafficMulticastLocatorList are ordinary LocatorList_t
(see fast-RTPS documentation) where server’s locators must be specified. At least one of them
should be populated.

• Duration_t discoveryServer_client_syncperiod specifies the time span between PDP metatraffic
exchange, and has only significance if discoveryProtocol is CLIENT, SERVER or BACKUP. The
default value is half a second.

9.6. Discovery 57

FastRTPS Documentation, Release 1.9.3

C++

Locator_t server_address(LOCATOR_KIND_UDPv4, 5574);
IPLocator::setIPv4(server_address, 192, 168, 2, 65);

RemoteServerAttributes ratt;
ratt.ReadguidPrefix("4D.49.47.55.45.4c.5f.42.41.52.52.4f");
ratt.metatrafficUnicastLocatorList.push_back(server_address);

participant_attr.rtps.builtin.discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::CLIENT;
participant_attr.rtps.builtin.discovery_config.m_DiscoveryServers.
→˓push_back(ratt);

XML

<participant profile_name="participant_profile_qos_discovery_
→˓serverlist">

<rtps>
<builtin>

<discovery_config>
<discoveryProtocol>CLIENT</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.
→˓41.52.52.4f">

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.2.65</address>
<port>5574</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>

• Duration_t leaseDuration. Linked with the participant liveliness mechanism it specifies how much time other
remote participants should consider this one alive.

• Duration_t leaseDuration_announcementperiod. Linked either with participant liveliness and announcement
mechanisms. It specifies how often a participant should send its discovery data in order to notify new participants
and refresh old ones liveliness:

• For liveliness sake it should be smaller than the leaseDuration in order to avoid other participants to
kill this one.

• There is a trade-off involved with the announcement. Too frequent announcement will bloat the
network with metatraffic but too scarce ones will delay the discovery of late joiners.

58 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

C++

participant_attr.rtps.builtin.discovery_config.leaseDuration =
→˓Duration_t(5, 0);
participant_attr.rtps.builtin.discovery_config.leaseDuration_
→˓announcementperiod = Duration_t(2, 0);

XML

<participant profile_name="participant_profile_qos_discovery_lease
→˓">

<rtps>
<builtin>

<discovery_config>
<leaseDuration>

<sec>5</sec>
</leaseDuration>
<leaseAnnouncement>

<sec>2</sec>
</leaseAnnouncement>

</discovery_config>
</builtin>

</rtps>
</participant>

• Duration_t discoveryServer_client_syncperiod. Linked either with client’s announcement mechanism. It
specifies how often a client should send its discovery data to a server that is not yet aware of its presence.
Given the fact that this announcement will be shut down the very moment the server acknowledges the client,
its frequency will not be a concern for network traffic outside network initialization stage.

Note that servers act like clients whenever they reference other servers, thus, discovery-
Server_client_syncperiod applies to them also in this scenario.

9.6.2 Static Endpoints Discovery

Endpoints Discovery Phase can be replaced by a static version that doesn’t send any information. It is useful when
you have a limited network bandwidth and a well-known schema of publishers and subscribers. Instead of receiving
entities information for matching, this information is loaded from an XML file.

First of all, you have to disable the Endpoints Discovery Phase and enable the Static Endpoints Discovery. This can
be done from the participant attributes.

participant_attr.rtps.builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol =
→˓false;
participant_attr.rtps.builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol =
→˓true;

Then, you will need to load the XML file containing the configuration of the remote participant. So, for example, if
there is a remote participant with a subscriber which is waiting to receive samples from your publisher, you will need
to load the configuration of this remote participant.

participant_attr.rtps.builtin.discovery_config.setStaticEndpointXMLFilename(
→˓"ParticipantWithASubscriber.xml");

A basic XML configuration file for this remote participant would contain information like the name of the re-
mote participant, the topic name and data type of the subscriber, and its entity and user-defined ID. All these

9.6. Discovery 59

FastRTPS Documentation, Release 1.9.3

values have to exactly match the parameter values used to configure the remote participant (through the class
ParticipantAttributes) and its subscriber (through the class SubscriberAttributes). Missing ele-
ments will acquire default values. For example:

<staticdiscovery>
<participant>

<name>HelloWorldSubscriber</name>
<reader>

<userId>3</userId>
<entityId>4</entityId>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>

</reader>
</participant>

</staticdiscovery>

The XML that configures the participant on the other side (in this case, a subscriber) could look like this:

<staticdiscovery>
<participant>

<name>HelloWorldPublisher</name>
<writer>

<userId>1</userId>
<entityId>2</entityId>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>

</writer>
</participant>

</staticdiscovery>

You can find an example that uses Static Endpoint Discovery.

The complete list of fields for readers and writers includes the following parameters:

• userId: numeric value.

• entityID: numeric value.

• expectsInlineQos: true or false. (only valid for readers)

• topicName: text value.

• topicDataType: text value.

• topicKind: NO_KEY or WITH_KEY.

• reliabilityQos: BEST_EFFORT_RELIABILITY_QOS or RELIABLE_RELIABILITY_QOS.

• unicastLocator

– address: text value.

– port: numeric value.

• multicastLocator

– address: text value.

– port: numeric value.

• topic

– name: text value.

– data type: text value.

60 Chapter 9. Advanced Functionalities

https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/StaticHelloWorldExample

FastRTPS Documentation, Release 1.9.3

– kind: text value.

• durabilityQos: VOLATILE_DURABILITY_QOS, TRANSIENT_LOCAL_DURABILITY_QOS or TRAN-
SIENT_DURABILITY_QOS.

• ownershipQos

– kind: SHARED_OWNERSHIP_QOS or EXCLUSIVE_OWNERSHIP_QOS.

• partitionQos: text value.

• livelinessQos

– kind: AUTOMATIC_LIVELINESS_QOS, MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS.

– leaseDuration_ms: numeric value.

9.7 Subscribing to Discovery Topics

As specified in the Discovery section, the Participant or RTPS Participant has a series of meta-data endpoints for
use during the discovery process. The participant listener interface includes methods which are called each time a
Publisher or a Subscriber is discovered. This allows you to create your own network analysis tools.

9.7. Subscribing to Discovery Topics 61

FastRTPS Documentation, Release 1.9.3

Implementation of custom listener

class CustomParticipantListener : public eprosima::fastrtps::ParticipantListener
{

/* Custom Listener onSubscriberDiscovery */
void onSubscriberDiscovery(

eprosima::fastrtps::Participant * participant,
eprosima::fastrtps::rtps::ReaderDiscoveryInfo && info) override

{
(void)participant;
switch(info.status) {

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_READER:
/* Process the case when a new subscriber was found in the domain */
cout << "New subscriber for topic '" << info.info.topicName() << "'

→˓of type '" << info.info.typeName() << "' discovered";
break;

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::CHANGED_QOS_READER:
/* Process the case when a subscriber changed its QOS */
break;

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::REMOVED_READER:
/* Process the case when a subscriber was removed from the domain */
cout << "Subscriber for topic '" << info.info.topicName() << "' of

→˓type '" << info.info.typeName() << "' left the domain.";
break;

}
}

/* Custom Listener onPublisherDiscovery */
void onPublisherDiscovery(

eprosima::fastrtps::Participant * participant,
eprosima::fastrtps::rtps::WriterDiscoveryInfo && info) override

{
(void)participant;
switch(info.status) {

case eprosima::fastrtps::rtps::WriterDiscoveryInfo ::DISCOVERED_WRITER:
/* Process the case when a new publisher was found in the domain */
cout << "New publisher for topic '" << info.info.topicName() << "'

→˓of type '" << info.info.typeName() << "' discovered";
break;

case eprosima::fastrtps::rtps::WriterDiscoveryInfo ::CHANGED_QOS_WRITER:
/* Process the case when a publisher changed its QOS */
break;

case eprosima::fastrtps::rtps::WriterDiscoveryInfo ::REMOVED_WRITER:
/* Process the case when a publisher was removed from the domain */
cout << "publisher for topic '" << info.info.topicName() << "' of

→˓type '" << info.info.typeName() << "' left the domain.";
break;

}
}

};

Setting the custom listener

// Create Custom user ParticipantListener (should inherit from
→˓eprosima::fastrtps::ParticipantListener.
CustomParticipantListener *listener = new CustomParticipantListener();
// Pass the listener on participant creation.
Participant* participant = Domain::createParticipant(participant_attr, listener);

62 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

The callbacks defined in the ReaderListener you attach to the EDP will execute for each data message after the built-in
protocols have processed it.

9.8 Tuning

9.8.1 Taking advantage of multicast

For topics with several subscribers, it is recommendable to configure them to use multicast instead of unicast. By
doing so, only one network package will be sent for each sample. This will improve both CPU and network usage.
Multicast configuration is explained in Multicast locators.

9.8.2 Increasing socket buffers size

In high rate scenarios or large data scenarios, the bottleneck could be the size of the socket buffers. Network packages
could be dropped because there is no space in the socket buffer. Using Reliable Reliability Fast RTPS will try to
recover lost samples, but with the penalty of retransmission. Using Best-Effort Reliability samples will be definitely
lost.

By default eProsima Fast RTPS creates socket buffers with the system default size, but you can mod-
ify it. sendSocketBufferSize attribute helps to increase the socket buffer used to send data.
listenSocketBufferSize attribute helps to increase the socket buffer used to read data.

C++

participant_attr.rtps.sendSocketBufferSize = 1048576;
participant_attr.rtps.listenSocketBufferSize = 4194304;

XML

<participant profile_name="participant_xml_profile_qos_socketbuffers">
<rtps>

<sendSocketBufferSize>1048576</sendSocketBufferSize>
<listenSocketBufferSize>4194304</listenSocketBufferSize>

</rtps>
</participant>

Finding out system maximum values

Linux operating system sets a maximum value for socket buffer sizes. When you set in Fast RTPS a socket buffer size,
your value cannot exceed the maximum value of the system.

To get these values you can use the command sysctl. Maximum buffer size value of socket buffers used to send
data could be retrieved using this command:

$> sudo sysctl -a | grep net.core.wmem_max
net.core.wmem_max = 1048576

For socket buffers used to receive data the command is:

$> sudo sysctl -a | grep net.core.rmem_max
net.core.rmem_max = 4194304

9.8. Tuning 63

FastRTPS Documentation, Release 1.9.3

If these default maximum values are not enough for you, you can also increase them.

$> echo 'net.core.wmem_max=12582912' >> /etc/sysctl.conf
$> echo 'net.core.rmem_max=12582912' >> /etc/sysctl.conf

9.8.3 Tuning Reliable mode

RTPS protocol can maintain reliable communication using special messages (Heartbeat and Ack/Nack messages).
RTPS protocol can detect which samples are lost and re-sent them again.

You can modify the frequency these special submessages are exchanged by specifying a custom heartbeat period. The
heartbeat period in the Publisher-Subscriber level is configured as part of the ParticipantAttributes:

publisher_attr.times.heartbeatPeriod.seconds = 0;
publisher_attr.times.heartbeatPeriod.nanosec = 500000000; //500 ms

In the Writer-Reader layer, this belongs to the WriterAttributes:

writer_attr.times.heartbeatPeriod.seconds = 0;
writer_attr.times.heartbeatPeriod.nanosec = 500000000; //500 ms

A smaller heartbeat period increases the number of overhead messages in the network, but speeds up the system
response when a piece of data is lost.

Non-strict reliability

Using a strict reliability, configuring History kind as KEEP_ALL, determines all samples have to be received by all
subscribers. This implicates a performance decrease in case a lot of samples are dropped. If you don’t need this
strictness, use a non-strict reliability, i.e. configure History kind as KEEP_LAST.

9.8.4 Slow down sample rate

Sometimes publishers could send data in a too high rate for subscribers. This can end dropping samples. To avoid this
you can slow down the rate using Flow Controllers.

9.9 Additional Quality of Service options

As a user, you can implement your own quality of service (QoS) restrictions in your application. eProsima Fast RTPS
comes bundled with a set of examples of how to implement common client-wise QoS settings:

• Ownership Strength: When multiple data sources come online, filter duplicates by focusing on the higher priority
sources.

• Filtering: Filter incoming messages based on content, time, or both.

These examples come with their own Readme.txt that explains how the implementations work.

9.10 Logging

Fast RTPS includes an extensible logging system with the following class hierarchy:

64 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

Log is the entry point of the Logging system. It exposes three macro definitions to ease its usage:

logInfo(INFO_MSG, "This is an info message");
logWarning(WARN_MSG, "This is a warning message");
logError(ERROR_MSG, "This is an error message");

In all cases, INFO_MSG, WARN_MSG and ERROR_MSG will be used as category for the log entry as a preprocessor
string, so you can use define any category inline.

logInfo(NEW_CATEGORY, "This log message belong to NEW_CATEGORY category.");

You can control the verbosity of the log system and filter it by category:

Log::SetVerbosity(Log::Kind::Warning);
std::regex my_regex("NEW_CATEGORY");
Log::SetCategoryFilter(my_regex);

The possible verbosity levels are Log::Kind::Info, Log::Kind::Warning and Log::Kind::Error.

When selecting one of them, you also select the ones with more priority.

• Selecting Log::Kind::Error, you will only receive error messages.

• Selecting Log::Kind::Warning you select Log::Kind::Error too.

• Selecting Log::Kind::Info will select all of them

To filter by category, you must provide a valid std::regex expression that will be applied to the category. The
categories that matches the expression, will be logged.

By default, the verbosity is set to Log::Kind::Error and without category filtering.

There are some others configurable parameters:

//! Enables the reporting of filenames in log entries. Disabled by default.
RTPS_DllAPI static void ReportFilenames(bool);
//! Enables the reporting of function names in log entries. Enabled by default when
→˓supported.

(continues on next page)

9.10. Logging 65

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

RTPS_DllAPI static void ReportFunctions(bool);
//! Sets the verbosity level, allowing for messages equal or under that priority to
→˓be logged.
RTPS_DllAPI static void SetVerbosity(Log::Kind);
//! Returns the current verbosity level.
RTPS_DllAPI static Log::Kind GetVerbosity();
//! Sets a filter that will pattern-match against log categories, dropping any
→˓unmatched categories.
RTPS_DllAPI static void SetCategoryFilter (const std::regex&);
//! Sets a filter that will pattern-match against filenames, dropping any unmatched
→˓categories.
RTPS_DllAPI static void SetFilenameFilter (const std::regex&);
//! Sets a filter that will pattern-match against the provided error string, dropping
→˓any unmatched categories.
RTPS_DllAPI static void SetErrorStringFilter (const std::regex&);

9.10.1 LogConsumers

LogConsumers are classes that implement how to manage the log information. They must be registered into the Log
system to be called with the log messages (after filtering).

Currently there are two LogConsumer implementations:

• StdoutConsumer: Default consumer, it prints the logging messages to the standard output. It has no con-
figuration available.

• FileConsumer: It prints the logging messages to a file. It has two configuration parameters:

– filename that defines the file where the consumer will write the log messages.

– append that indicates to the consumer if the output file must be opened to append new content.

By default, filename is output.log and append is equals to false.

If you want to add a consumer to manage the logs, you must call the RegisterConsumer method of the Log. To
remove all consumers, including the default one, you should call the ClearConsumers method. If you want to reset
the Log configuration to its defaults, including recovering the default consumer, you can call to its Reset method.

Log::ClearConsumers(); // Deactivate StdoutConsumer

// Add FileConsumer consumer
std::unique_ptr<FileConsumer> fileConsumer(new FileConsumer("append.log", true));
Log::RegisterConsumer(std::move(fileConsumer));

// Back to its defaults: StdoutConsumer will be enable and FileConsumer removed.
Log::Reset();

9.10.2 XML Log configuration

You can configure the logging system through xml with the tag <log> under the <dds> tag, or as an standalone
file (without the <dds> tag, just <log> as root). You can set <use_default> and a set of <consumer>. Each
<consumer> is defined by its <class> and a set of <property>.

<log>
<use_default>FALSE</use_default>

(continues on next page)

66 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<consumer>
<class>FileConsumer</class>
<property>

<name>filename</name>
<value>test1.log</value>

</property>
<property>

<name>append</name>
<value>TRUE</value>

</property>
</consumer>

</log>

<use_default> indicates if we want to use the default consumer StdoutConsumer.

Each <consumer> defines a consumer that will be added to the consumers list of the Log. <class> indicates
which consumer class to instantiate and the set of <property> configures it. StdoutConsumer has no properties
to be configured, but FileConsumer has filename and append.

This marks the end of this document. We recommend you to take a look at the Doxygen API reference and the em-
bedded examples that come with the distribution. If you need more help, send us an email to support@eprosima.com.

9.10. Logging 67

FastRTPS Documentation, Release 1.9.3

68 Chapter 9. Advanced Functionalities

CHAPTER 10

Security

Fast RTPS can be configured to provide secure communications. For this purpose, Fast RTPS implements pluggable
security at three levels: authentication of remote participants, access control of entities and encryption of data.

By default, Fast RTPS doesn’t compile security support. You can activate it adding -DSECURITY=ON at CMake
configuration step. For more information about Fast RTPS compilation, see Installation from Sources.

You can activate and configure security plugins through eprosima::fastrtps::Participant attributes using
properties. A eprosima::fastrtps::rtps::Property is defined by its name (std::string) and its
value (std::string). Throughout this page, there are tables showing you the properties used by each security
plugin.

10.1 Authentication plugins

They provide authentication on the discovery of remote participants. When a remote participant is detected, Fast RTPS
tries to authenticate using the activated Authentication plugin. If the authentication process finishes successfully then
both participants match and discovery protocol continues. On failure, the remote participant is rejected.

You can activate an Authentication plugin using Participant property dds.sec.auth.plugin. Fast RTPS provides
a built-in Authentication plugin. More information on Auth:PKI-DH.

10.2 Access control plugins

They provide validation of entities’ permissions. After a remote participant is authenticated, its permissions need to
be validated and enforced.

Access rights that each entity has over a resource are described. Main entity is the Participant and it is used to access
or produce information on a Domain; hence the Participant has to be allowed to run in a certain Domain. Also, a
Participant is responsible for creating Publishers and Subscribers that communicate over a certain Topic. Hence, a
Participant has to have the permissions needed to create a Topic, to publish through its Publishers certain Topics,
and to subscribe via its Subscribers to certain Topics. Access control plugin can configure the Cryptographic plugin
because its usage is based on the Participant’s permissions.

69

FastRTPS Documentation, Release 1.9.3

You can activate an Access control plugin using Participant property dds.sec.access.plugin. Fast RTPS
provides a built-in Access control plugin. More information on Access:Permissions.

10.3 Cryptographic plugins

They provide encryption support. Encryption can be applied over three different levels of RTPS protocol. Crypto-
graphic plugins can encrypt whole RTPS messages, RTPS submessages of a particular entity (Writer or Reader) or the
payload (user data) of a particular Writer. You can combine them.

You can activate an Cryptographic plugin using Participant property dds.sec.crypto.plugin. Fast RTPS pro-
vides a built-in Cryptographic plugin. More information on Crypto:AES-GCM-GMAC.

The Cryptographic plugin is configured by the Access control plugin. If Access control will not be used, you can
configure the Cryptographic plugin manually with the next properties:

Encrypt whole RTPS messages

You can configure a Participant to encrypt all RTPS messages using Participant property rtps.participant.
rtps_protection_kind with the value ENCRYPT.

Encrypt RTPS submessages of a particular entity

You can configure an entity (Writer or Reader) to encrypt its RTPS submessages using Entity property rtps.
endpoint.submessage_protection_kind with the value ENCRYPT.

Encrypt payload of a particular Writer

You can configure a Writer to encrypt its payload using Writer property rtps.endpoint.
payload_protection_kind with the value ENCRYPT.

10.4 Built-in plugins

The current version comes out with three security built-in plugins:

• Auth:PKI-DH: this plugin provides authentication using a trusted Certificate Authority (CA).

• Access:Permissions: this plugin provides access control to Participants at the Domain and Topic level.

• Crypto:AES-GCM-GMAC: this plugin provides authenticated encryption using Advanced Encryption Standard
(AES) in Galois Counter Mode (AES-GCM).

10.4.1 Auth:PKI-DH

This built-in plugin provides authentication between discovered participants. It is supplied by a trusted Certificate
Authority (CA) and uses ECDSA Digital Signature Algorithms to perform the mutual authentication. It also establishes
a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement Methods. This shared secret can be used
by other security plugins as Crypto:AES-GCM-GMAC.

You can activate this plugin using Participant property dds.sec.auth.plugin with the value builtin.
PKI-DH. Next tables show you the Participant properties used by this security plugin.

70 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

Table 1: Properties to configure Auth:PKI-DH
Property name (all properties have
“dds.sec.auth.builtin.PKI-DH.” pre-
fix)

Property value

identity_ca URI to the X509 certificate of the Identity CA. Supported URI schemes:
file. The file schema shall refer to a X.509 v3 certificate in PEM format.

identity_certificate URI to an X509 certificate signed by the Identity CA in PEM format con-
taining the signed public key for the Participant. Supported URI schemes:
file.

identity_crl (optional) URI to a X509 Certificate Revocation List (CRL). Supported URI
schemes: file.

private_key URI to access the private Private Key for the Participant. Supported URI
schemes: file.

password (optional) A password used to decrypt the private_key.

Generation of x509 certificates

You can generate your own x509 certificates using OpenSSL application. This section teaches you how to do this.

Generate a certificate for the CA

When you want to create your own CA certificate, you first have to write a configuration file with your CA information.

File: maincaconf.cnf
OpenSSL example Certificate Authority configuration file

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = . # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir

certificate = $dir/maincacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/maincakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days= 1825 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = sha256 # which md to use.

(continues on next page)

10.4. Built-in plugins 71

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

preserve = no # keep passed DN ordering

policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
prompt = no
#default_bits = 1024
#default_keyfile = privkey.pem
distinguished_name= req_distinguished_name
#attributes = req_attributes
#x509_extensions = v3_ca # The extentions to add to the self signed cert
string_mask = utf8only

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
0.organizationName = eProsima
commonName = eProsima Main Test CA
emailAddress = mainca@eprosima.com

After writing the configuration file, next commands generate the certificate using ECDSA.

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -x509 -days 3650 -newkey ec:ecdsaparam -keyout maincakey.pem -out
→˓maincacert.pem -config maincaconf.cnf

Generate a certificate for the Participant

When you want to create your own certificate for your Participant, you first have to write a configuration file.

File: appconf.cnf

prompt = no
string_mask = utf8only

(continues on next page)

72 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

distinguished_name = req_distinguished_name

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
organizationName = eProsima
emailAddress = example@eprosima.com
commonName = AppName

After writing the configuration file, next commands generate the certificate, using ECDSA, for your Participant.

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -new -newkey ec:ecdsaparam -config appconf.cnf -keyout appkey.pem -
→˓out appreq.pem

openssl ca -batch -create_serial -config maincaconf.cnf -days 3650 -in appreq.pem -
→˓out appcert.pem

10.4.2 Access:Permissions

This built-in plugin provides access control using a permissions document signed by a shared Certificate Authority. It
is configured with three documents:

You can activate this plugin using Participant property dds.sec.access.plugin with the value builtin.
Access-Permissions. Next table shows the Participant properties used by this security plugin.

Table 2: Properties to configure Access:Permissions
Property name (all properties have
“dds.sec.access.builtin.Access-
Permissions.” prefix)

Property value

permissions_ca URI to the X509 certificate of the Permissions CA. Supported URI
schemes: file. The file schema shall refer to an X.509 v3 certificate
in PEM format.

governance URI to shared Governance Document signed by the Permissions CA
in S/MIME format. Supported URI schemes: file.

permissions URI to the Participant permissions document signed by the Permis-
sions CA in S/MIME format. Supported URI schemes: file.

Permissions CA Certificate

This is an X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain Governance
and Domain Permissions documents.

Domain Governance Document

Domain Governance document is an XML document that specifies how the domain should be secured. It shall be
signed by the Permissions CA in S/MIME format.

The format of this document is defined in this Governance XSD file. You can also find a generic Governance XML
example.

10.4. Built-in plugins 73

https://github.com/eProsima/Fast-RTPS/blob/master/resources/xsd/governance.xsd
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/governance.xml
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/governance.xml

FastRTPS Documentation, Release 1.9.3

Domain Rules

Each domain rule is delimited by the <domain_rule> XML element tag. Each domain rule contains the following
elements and sections:

• Domains element

• Allow Unauthenticated Participants element

• Enable Join Access Control element

• Discovery Protection Kind element

• Liveliness Protection Kind element

• RTPS Protection Kind element

• Topic Access Rules section

The domain rules are evaluated in the same order as they appear in the document. A rule only applies to a particular
Participant if the domain section matches the domain to which the Participant belongs. If multiple rules match, the
first rule that matches is the only one that applies.

Domains element

This element is delimited by the XML element <domains>. The value in this element identifies the collection of
Domains values to which the rule applies.

The <domains> element can contain a single domain identifier, for example:

<domains>
<id>1</id>

</domains>

Or it can contain a range of domain identifiers, for example:

<domains>
<id_range>

<min>1</min>
<max>10</max>

</id_range>
</domains>

Or it can contain both, a list of domain identifiers and ranges of domain identifiers.

Allow Unauthenticated Participants element

This element is delimited by the XML element <allow_unauthenticated_participants>. Indicates
whether the matching of the Participant with a remote Participant requires authentication. If the value is false,
the Participant shall enforce the authentication of remote Participants and disallow matching those that cannot be
successfully authenticated. If the value is true, the Participant shall allow matching other Participants (event if the
remote Participant cannot authenticate) as long as there is not an already valid authentication with the same Partici-
pant’s GUID.

74 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

Enable Join Access Control element

This element is delimited by the XML element <enable_join_access_control>. Indicates whether the
matching of the participant with a remote Participant requires authorization by the Access control plugin. If the
value is false, the Participant shall not check the permissions of the authenticated remote Participant. If the value is
true, the Participant shall check the permissions of the authenticated remote Participant.

Discovery Protection Kind element

This element is delimited by the XML element <discovery_protection_kind>. Indicates whether the secure
channel of the endpoint discovery phase needs to be encrypted. If the value is SIGN or ENCRYPT, the secure channel
shall be encrypted. If the value is NONE, it shall not.

Liveliness Protection Kind element

This element is delimited by the XML element <liveliness_protection_kind>. Indicates whether the se-
cure channel of the liveliness mechanism needs to be encrypted. If the value is SIGN or ENCRYPT, the secure channel
shall be encrypted. If the value is NONE, it shall not.

RTPS Protection Kind element

This element is delimited by the XML element <rtps_protection_kind>. Indicates whether the whole RTPS
Message needs to be encrypted. If the value is SIGN or ENCRYPT, whole RTPS Messages shall be encrypted. If the
value is NONE, it shall not.

Topic Rule Section

This element is delimited by the XML element <topic_rule> and appears within the Topic Access Rules Section
whose XML element is <topic_access_rules>.

Each one contains the following elements:

• Topic expression

• Enable Discovery protection

• Enable Liveliness protection

• Enable Read Access Control element

• Enable Write Access Control element

• Metadata protection Kind

• Data protection Kind

The topic expression selects a set of Topic names. The rule applies to any Publisher or Subscriber associated with a
Topic whose name matches the Topic expression name.

The topic access rules are evaluated in the same order as they appear within the <topic_access_rules> section.
If multiple rules match, the first rule that matches is the only one that applies.

10.4. Built-in plugins 75

FastRTPS Documentation, Release 1.9.3

Topic expression element

This element is delimited by the XML element <topic_expression>. The value in this element identifies the set
of Topic names to which the rule applies. The rule will apply to any Publisher and Subscriber associated with a Topic
whose name matches the value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function
as specified in POSIX 1003.2-1992, Section B.6.

Enable Discovery protection element

This element is delimited by the XML element <enable_discovery_protection>. Indicates whether the
entity related discovery information shall go through the secure channel of endpoint discovery phase. If the value is
false, the entity discovery information shall be sent by an unsecured channel of discovery. If the value is true, the
information shall be sent by the secure channel.

Enable Liveliness Protection element

This element is delimited by the XML element <enable_liveliness_protection>. Indicates whether the
entity related liveliness information shall go through the secure channel of liveliness mechanism. If the value is
false, the entity liveliness information shall be sent by an unsecured channel of liveliness. If the value is true, the
information shall be sent by the secure channel.

Enable Read Access Control element

This element is delimited by the XML element <enable_read_access_control>. Indicates whether read
access to the Topic is protected. If the value is false, then local Subscriber creation and remote Subscriber matching
can proceed without further access-control mechanisms imposed. If the value is true, they shall be checked using
Access control plugin.

Enable Write Access Control element

This element is delimited by the XML element <enable_write_access_control>. Indicates whether write
access to the Topic is protected. If the value is false, then local Publisher creation and remote Publisher matching
can proceed without further access-control mechanisms imposed. If the value is true, they shall be checked using
Access control plugin.

Metadata Protection Kind element

This element is delimited by the XML element <metadata_protection_kind>. Indicates whether the entity’s
RTPS submessages shall be encrypted by the Cryptographic plugin. If the value is true, the RTPS submessages shall
be encrypted. If the value is false, they shall not.

Data Protection Kind element

This element is delimited by the XML element <data_protection_kind>. Indicates whether the data payload
shall be encrypted by the Cryptographic plugin. If the value is true, the data payload shall be encrypted. If the value
is false, the data payload shall not.

76 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

Participant permissions document

The permissions document is an XML document containing the permissions of the Participant and binding them to its
distinguished name. The permissions document shall be signed by the Permissions CA in S/MIME format.

The format of this document is defined in this Permissions XSD file. You can also find a generic Permissions XML
example.

Grant Section

This section is delimited by the <grant> XML element tag. Each grant section contains three sections:

• Subject name

• Validity

• Rules

Subject name

This section is delimited by XML element <subject_name>. The subject name identifies the Participant to which
the permissions apply. Each subject name can only appear in a single <permissions> section within the XML
Permissions document. The contents of the subject name element shall be the x.509 subject name for the Participant
as is given in the Authorization Certificate.

Validity

This section is delimited by the XML element <validity>. It reflects the valid dates for the permissions.

Rules

This section contains the permissions assigned to the Participant. The rules are applied in the same order that appears
in the document. If the criteria for the rule matched the Domain join and/or publish or subscribe operation that is
being attempted, then the allow or deny decision is applied. If the criteria for a rule does not match the operation
being attempted, the evaluation shall proceed to the next rule. If all rules have been examined without a match, then
the decision specified by the <default> rule is applied. The default rule, if present, must appear after all allow and
deny rules. If the default rule is not present, the implied default decision is DENY.

For the grant to match there shall be a match of the topics and partitions criteria.

Allow rules are delimited by the XML element <allow_rule>. Deny rules are delimited by the XML element
<deny_rule>. Both contain the same element children.

Domains Section

This section is delimited by the XML element <domains>. The value in this element identifies the collection of
Domain values to which the rule applies. The syntax is the same as for the Domains element of the Governance
document.

10.4. Built-in plugins 77

https://github.com/eProsima/Fast-RTPS/blob/master/resources/xsd/permissions.xsd
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/permissions.xml
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/permissions.xml

FastRTPS Documentation, Release 1.9.3

Format of the Allowed/Denied Actions sections

The sections for each of the three action kinds have a similar format. The only difference is the name of the XML
element used to delimit the action:

• The Allow/Deny Publish Action is delimited by the <publish> XML element.

• The Allow/Deny Subscribe Action is delimited by the <subscribe> XML element.

• The Allow/Deny Relay Action is delimited by the <relay> XML element.

Each action contains two conditions.

• Allowed/Denied Topics Condition

• Allowed/Denied Partitions Condition

Topics condition

This section is delimited by the <topics> XML element. It defines the Topic names that must be matched for the
allow/deny rule to apply. Topic names may be given explicitly or by means of Topic name expressions. Each topic
name of topic-name expressions appears separately in a <topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function
as specified in POSIX 1003.1-1992, Section B.6.

<topics>
<topic>Plane</topic>
<topic>Hel*</topic>

</topics>

Partitions condition

This section is delimited by the <partitions> XML element. It limits the set Partitions names that may be
associated with the (publish, subscribe, relay) action for the rule to apply. Partition names expression syntax and
matching shall use the syntax and rules of the POSIX fnmatch() function as specified in POSIX 1003.2-1992,
Section B.6. If there is no <partitions> section within a rule, then the default “empty string” partition is assumed.

<partitions>
<partition>A</partition>
<partition>B*</partition>

</partitions>

Signing documents using x509 certificate

Governance document and Permissions document have to be signed by an X509 certificate. Generation of an X509
certificate is explained in Generation of x509 certificates. Next commands sign the necessary documents for Ac-
cess:Permissions plugin.

Governance document: governance.xml
openssl smime -sign -in governance.xml -text -out governance.smime -signer maincacert.
→˓pem -inkey maincakey.pem

Permissions document: permissions.xml
openssl smime -sign -in permissions.xml -text -out permissions.smime -signer
→˓maincacert.pem -inkey maincakey.pem (continues on next page)

78 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

10.4.3 Crypto:AES-GCM-GMAC

This built-in plugin provides authenticated encryption using AES in Galois Counter Mode (AES-GCM). It also pro-
vides additional reader-specific message authentication codes (MACs) using Galois MAC (AES-GMAC). This plugin
needs the activation of the security plugin Auth:PKI-DH.

You can activate this plugin using Participant property dds.sec.crypto.plugin with the value builtin.
AES-GCM-GMAC.

10.5 Example: configuring the Participant

This example show you how to configure a Participant to activate and configure Auth:PKI-DH, Access:Permissions
and Crypto:AES-GCM-GMAC plugins.

Participant attributes

10.5. Example: configuring the Participant 79

FastRTPS Documentation, Release 1.9.3

C++

eprosima::fastrtps::ParticipantAttributes part_attr;

// Activate Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.plugin", "builtin.
→˓PKI-DH");

// Configure Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_ca", "file://maincacert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_certificate", "file://appcert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓private_key", "file://appkey.pem");

// Activate Access:Permissions plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.plugin",
→˓"builtin.Access-Permissions");

// Configure Access:Permissions plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.builtin.Access-
→˓Permissions.permissions_ca",

"file://maincacet.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.builtin.Access-
→˓Permissions.governance",

"file://governance.smime");
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.builtin.Access-
→˓Permissions.permissions",

"file://permissions.smime");

// Activate Crypto:AES-GCM-GMAC plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.crypto.plugin",
→˓"builtin.AES-GCM-GMAC");

XML

<participant profile_name="secure_participant_conf_all_plugin_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Configure Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
<value>file://maincacert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
<value>file://appcert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.private_key</name>
<value>file://appkey.pem</value>

</property>

<!-- Activate Access:Permissions plugin -->
<property>

<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>

</property>

<!-- Configure Access:Permissions plugin -->
<property>

<name>dds.sec.access.builtin.Access-Permissions.permissions_ca</
→˓name>

<value>file://maincacet.pem</value>
</property>
<property>

<name>dds.sec.access.builtin.Access-Permissions.governance</
→˓name>

<value>file://governance.smime</value>
</property>
<property>

<name>dds.sec.access.builtin.Access-Permissions.permissions</
→˓name>

<value>file://permissions.smime</value>
</property>

<!-- Activate Crypto:AES-GCM-GMAC plugin -->
<property>

<name>dds.sec.crypto.plugin</name>
<value>builtin.AES-GCM-GMAC</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

80 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

This example shows you how to configure a Participant to activate and configure Auth:PKI-DH and Crypto:AES-
GCM-GMAC plugins, without and Access control plugin. It also configures Participant to encrypt its RTPS messages,
Writer and Reader to encrypt their RTPS submessages and a writer to encrypt the payload (user data).

Participant attributes

10.5. Example: configuring the Participant 81

FastRTPS Documentation, Release 1.9.3

C++

eprosima::fastrtps::ParticipantAttributes part_attr;

// Activate Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.plugin", "builtin.
→˓PKI-DH");

// Configure Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_ca", "file://maincacert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_certificate", "file://appcert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓private_key", "file://appkey.pem");

// Activate Crypto:AES-GCM-GMAC plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.crypto.plugin",
→˓"builtin.AES-GCM-GMAC");

// Encrypt all RTPS submessages
part_attr.rtps.properties.properties().emplace_back("rtps.participant.rtps_
→˓protection_kind", "ENCRYPT");

XML

<participant profile_name="secure_participant_conf_no_access_control_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Configure Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
<value>file://maincacert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
<value>file://appcert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.private_key</name>
<value>file://appkey.pem</value>

</property>

<!-- Activate Crypto:AES-GCM-GMAC plugin -->
<property>

<name>dds.sec.crypto.plugin</name>
<value>builtin.AES-GCM-GMAC</value>

</property>

<!-- Encrypt all RTPS submessages -->
<property>

<name>rtps.participant.rtps_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

82 Chapter 10. Security

FastRTPS Documentation, Release 1.9.3

Publisher attributes

C++

eprosima::fastrtps::PublisherAttributes pub_attr;

// Encrypt RTPS submessages
pub_attr.properties.properties().emplace_back("rtps.endpoint.submessage_protection_
→˓kind", "ENCRYPT");

// Encrypt payload
pub_attr.properties.properties().emplace_back("rtps.endpoint.payload_protection_kind
→˓", "ENCRYPT");

XML

<publisher profile_name="secure_publisher_xml_profile">
<propertiesPolicy>

<properties>
<!-- Encrypt RTPS submessages -->
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>

<!-- Encrypt payload -->
<property>

<name>rtps.endpoint.payload_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</publisher>

Subscriber attributes

10.5. Example: configuring the Participant 83

FastRTPS Documentation, Release 1.9.3

C++

eprosima::fastrtps::SubscriberAttributes sub_attr;

// Encrypt RTPS submessages
sub_attr.properties.properties().emplace_back("rtps.endpoint.submessage_protection_
→˓kind", "ENCRYPT");

XML

<subscriber profile_name="secure_publisher_xml_profile">
<propertiesPolicy>

<properties>
<!-- Encrypt RTPS submessages -->
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</subscriber>

84 Chapter 10. Security

CHAPTER 11

Real-time behavior

Fast RTPS can be configured to offer real-time features. These features will guarantee Fast RTPS responses within
specified time constrains. To maintain this compromise Fast RTPS is able to have the following behavior:

• Not allocate memory after the initialization of Fast RTPS entities.

• Several methods are blocked for a maximum period of time.

This section explains how to configure Fast RTPS to achieve this behavior. For easier understanding it was divided in
two subsections:

• Tuning allocations: configuration to avoid memory allocation after initialization.

• Non-blocking calls: usage of non-blocking methods for real-time behavior.

11.1 Tuning allocations

Some important non-deterministic operating system calls are the ones for allocating and deallocating memory. Most
real-time systems have the need to operate in a way that all dynamic memory is allocated on the application startup,
and avoid calls to memory management APIs on the main loop.

Fast-RTPS provides some configuration parameters to meet these requirements, allowing the items of internal data
collections to be preallocated. In order to choose the correct values for these parameters, the user should be aware of
the topology of the whole domain, so the number of participants and endpoints should be known when setting them.

11.1.1 Parameters on the participant

All the allocation related parameters on the participant are grouped into the rtps.allocation field of the
ParticipantAttributes struct.

85

FastRTPS Documentation, Release 1.9.3

Limiting the number of discovered participants

Every participant in Fast-RTPS holds an internal collection of ParticipantProxyData ob-
jects with the information of the local and the remote participants. Field participants inside
RTPSParticipantAllocationAttributes allows the configuration of the allocation behavior of that
collection. The user can specify the initial number of elements preallocated, the maximum number of elements
allowed, and the allocation increment. By default, a full dynamic behavior is used.

Limiting the number of discovered endpoints

Every ParticipantProxyData object holds internal collections with the ReaderProxyData and
WriterProxyData objects with the information of the readers and writers of a participant. In a similar way to
the participants field, RTPSParticipantAllocationAttributes has fields readers and writers
to set the configuration of the allocation behavior of those collections. The user can specify the initial number of
elements preallocated, the maximum number of elements allowed, and the allocation increment. By default, a full
dynamic behavior is used.

11.1.2 Parameters on the publisher

Every publisher holds a collection with some information regarding the subscribers it has matched to. Field
matched_subscriber_allocation inside PublisherAttributes allows the configuration of the allo-
cation behavior of that collection. The user can specify the initial number of elements preallocated, the maximum
number of elements allowed, and the allocation increment. By default, a full dynamic behavior is used.

11.1.3 Parameters on the subscriber

Every subscriber holds a collection with some information regarding the publishers it has matched to. Field
matched_publisher_allocation inside SubscriberAttributes allows the configuration of the allo-
cation behavior of that collection. The user can specify the initial number of elements preallocated, the maximum
number of elements allowed, and the allocation increment. By default, a full dynamic behavior is used.

11.1.4 Full example

Given a system with the following topology:

Table 1: Allocation tuning example topology
Participant P1 Participant P2 Participant P3
Topic 1 publisher Topic 1 subscriber Topic 2 subscriber
Topic 1 subscriber Topic 2 publisher
Topic 1 subscriber Topic 2 subscriber

• All the subscribers match exactly with 1 publisher.

• The publisher for topic 1 matches with 3 subscribers, and the publisher for topic 2 matches with 2 subscribers.

• The maximum number of publishers per participant is 1, and the maximum number of subscribers per participant
is 2.

• The total number of participants is 3.

86 Chapter 11. Real-time behavior

FastRTPS Documentation, Release 1.9.3

The following piece of code shows the set of parameters needed for the use case depicted in this example.

11.1. Tuning allocations 87

FastRTPS Documentation, Release 1.9.3

C++

// Before creating a participant:
// We know we have 3 participants on the domain
participant_attr.rtps.allocation.participants =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
// We know we have at most 2 readers on each participant
participant_attr.rtps.allocation.readers =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);
// We know we have at most 1 writer on each participant
participant_attr.rtps.allocation.writers =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

// Before creating the publisher for topic 1:
// we know we will only have three matching subscribers
publisher_attr.matched_subscriber_allocation =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);

// Before creating the publisher for topic 2:
// we know we will only have two matching subscribers
publisher_attr.matched_subscriber_allocation =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);

// Before creating a subscriber:
// we know we will only have one matching publisher
subscriber_attr.matched_publisher_allocation =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

XML

<participant profile_name="participant_alloc_qos_example">
<rtps>

<allocation>
<!-- We know we have 3 participants on the domain -->
<total_participants>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</total_participants>
<!-- We know we have at most 2 readers on each participant -->
<total_readers>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</total_readers>
<!-- We know we have at most 1 writer on each participant -->
<total_writers>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</total_writers>
</allocation>

</rtps>
</participant>

<publisher profile_name="alloc_qos_example_pub_for_topic_1">
<!-- we know we will have three matching subscribers -->
<matchedSubscribersAllocation>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>
</publisher>

<publisher profile_name="alloc_qos_example_pub_for_topic_2">
<!-- we know we will have two matching subscribers -->
<matchedSubscribersAllocation>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>
</publisher>

<subscriber profile_name="alloc_qos_example_sub">
<!-- we know we will only have one matching publisher -->
<matchedPublishersAllocation>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</matchedPublishersAllocation>
</subscriber>

88 Chapter 11. Real-time behavior

FastRTPS Documentation, Release 1.9.3

11.2 Non-blocking calls

Note: This feature is not fully supported on OSX. It doesn’t support necessary POSIX Real-time features. The feature
is limited by the implementation of std::timed_mutex and std::condition_variable_any.

It is important that a method isn’t blocked for indeterminate time to achieve real-time. A method must only be blocked
for a maximum period of time. In Fast-RTPS API there are several methods that permit to set this. But first Fast-RTPS
should be configured with the CMake option -DSTRICT_REALTIME=ON. The list of these functions is displayed in
the table below.

Table 2: Fast RTPS non-blocking API
Method Description
Publisher::write() These methods are blocked for a period of time. ReliabilityQosPolicy.max_blocking_time

on PublisherAttributes defines this period of time. Default value is 100 milliseconds.
Sub-
scriber::takeNextData()

This methods is blocked for a period of time. ReliabilityQosPolicy.max_blocking_time on
SubscriberAttributes defines this period of time. Default value is 100 milliseconds.

Sub-
scriber::readNextData()

This method is blocked for a period of time. ReliabilityQosPolicy.max_blocking_time on
SubscriberAttributes defines this period of time. Default value is 100 milliseconds.

Sub-
scriber::wait_for_unread_samples()

Accepts an argument specifying how long the method can be blocked.

11.2. Non-blocking calls 89

FastRTPS Documentation, Release 1.9.3

90 Chapter 11. Real-time behavior

CHAPTER 12

Dynamic Topic Types

eProsima Fast RTPS provides a dynamic way to define and use topic types and topic data. Our implementation follows
the OMG Extensible and Dynamic Topic Types for DDS interface. For more information, you can read the document
(DDS-XTypes V1.2) in this link.

The dynamic topic types offer the possibility to work over RTPS without the restrictions related to the IDLs. Us-
ing them the users can declare the different types that they need and manage the information directly, avoiding the
additional step of updating the IDL file and the generation of C++ classes.

The management of dynamic types is split into two main groups. The first one manages the declaration of the types,
building and setting the configuration of every type and the second one is in charge of the data instances and their
information.

12.1 Concepts

Type Descriptor

Stores the information about one type with its relationships and restrictions. It’s the minimum class needed to generate
a Dynamic type and in case of the complex ones, it stores information about its children or its parent types.

Member Descriptor

Several complex types need member descriptors to declare the relationship between types. This class stores informa-
tion about that members like their name, their unique ID, the type that is going to be created and the default value after
the creation. Union types have special fields to identify each member by labels.

Dynamic Type Builder Factory

Singleton class that is in charge of the creation and the management of every DynamicTypes and
DynamicTypeBuilders. It declares methods to create each kind of supported types, making easier the man-
agement of the descriptors. Every object created by the factory must be deleted calling the delete_type method.

Dynamic Type Builder

Intermediate class used to configure and create DynamicTypes. By design Dynamic types can’t be modified, so the
previous step to create a new one is to create a builder and apply the settings that the user needs. Users can create

91

http://www.omg.org/spec/DDS-XTypes/1.2

FastRTPS Documentation, Release 1.9.3

several types using the same builder, but the changes applied to the builder don’t affect to the types created previously.
Every object created by a builder must be deleted calling the delete_type method of the Dynamic Type builder
Factory.

Dynamic Type

Base class in the declaration of Dynamic types, it stores the information about its type and every Member that is related
to it. It creates a copy of the descriptor on its creation and cannot be changed to keep the consistency.

Dynamic Type Member

A class that creates the relationship between a member descriptor with its parent type. Dynamic Types have a one
Dynamic type member for every child member added to it.

Dynamic Data Factory

Singleton class that is in charge of the creation and the management of every DynamicData. It creates them using
the given DynamicType with its settings. Every data object created by the factory must be deleted calling the
delete_type method. Allows creating a TypeIdentifier and a (Minimal and Complete) TypeObject from
a TypeDescriptor.

Dynamic Data

A class that manages the data of the Dynamic Types. It stores the information that is sent and received.
There are two ways to work with DynamicDatas, the first one is the most secured, activating the macro
DYNAMIC_TYPES_CHECKING, it creates a variable for each primitive kind to help the debug process. The sec-
ond one reduces the size of the DynamicData class using only the minimum values and making the code harder to
debug.

Dynamic PubSubType

A class that inherits from TopicDataType and works as an intermediary between RTPS Domain and the Dynamic
Types. It implements the methods needed to create, serialize, deserialize and delete DynamicData instances when
the participants need to convert the received information from any transport to the registered dynamic type.

12.2 Supported Types

12.2.1 Primitive Types

This section includes every simple kind:

BOOLEAN INT64
BYTE UINT16
CHAR8 UINT32
CHAR16 UINT64
INT16 FLOAT32
INT32 FLOAT64
FLOAT128

Primitive types don’t need a specific configuration to create the type. Because of that
DynamicTypeBuilderFactory has got exposed several methods to allow users to create the Dynamic
Types avoiding the DynamicTypeBuilder step. The example below shows the two ways to create dynamic data
of a primitive type. The DynamicData class has a specific get and set Methods for each primitive type of the list.

92 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.9.3

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_builder();
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_int32_value(1);

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_int32_value(1);

12.2.2 String and WString

Strings are pretty similar to primitive types with one exception, they need to set the size of the buffer that they
can manage. To do that, DynamicTypeBuilderFactory exposes the methods create_string_type and
create_wstring_type. By default, its size is set to 255 characters.

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_string_value("Dynamic String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_string_value("Dynamic String");

12.2.3 Alias

Alias types have been implemented to rename an existing type, keeping the rest of properties of the given type.
DynamicTypeBuilderFactory exposes the method create_alias_type to create alias types taking the
base type and the new name that the alias is going to set. After the creation of the DynamicData, users can access
its information like they were working with the base type.

// Using Builders
DynamicTypeBuilder_ptr base_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(base_builder.get());
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(created_type.get(), "alias");
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder.get());
data->set_string_value("Dynamic Alias String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);

(continues on next page)

12.2. Supported Types 93

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pType, "alias");
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pAliasType);
data2->set_string_value("Dynamic Alias String");

12.2.4 Enumeration

The enum type is managed as complex in Dynamic Types because it allows adding members to set the different values
that the enum is going to manage. Internally, it works with a UINT32 to store what value is selected.

To use enumerations users must create a Dynamic Type builder calling to create_enum_type and after that, they
can call to add_member given the index and the name of the different values that the enum is going to support.

The DynamicData class has got methods get_enum_value and set_enum_value to work with UINT32 or
with strings using the names of the members added to the builder.

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓enum_builder();
builder->add_empty_member(0, "DEFAULT");
builder->add_empty_member(1, "FIRST");
builder->add_empty_member(2, "SECOND");
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(pType);

std::string sValue = "SECOND";
data->set_enum_value(sValue);
uint32_t uValue = 2;
data->set_enum_value(uValue);

12.2.5 Bitset

Bitset types are similar to structure types but their members are only bitfields, which are stored optimally. In the static
version of bitsets, each bit uses just one bit in memory (with platform limitations) without alignment considerations.
A bitfield can be anonymous (cannot be addressed) to skip unused bits within a bitset. Each bitfield in a bitset can be
modified through their minimal needed primitive representation.

Number of bits Primitive
1 BOOLEAN
2-8 UINT8
9-16 UINT16
17-32 UINT32
33-64 UINT64

Each bitfield (or member) works like its primitive type with the only difference that the internal storage only modifies
the involved bits instead of the full primitive value.

Bit_bound and position of the bitfield can be set using annotations (useful when converting between static and dynamic
bitsets).

// Create bitfields
DynamicTypeBuilder_ptr base_type_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_byte_builder();

(continues on next page)

94 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

auto base_type = base_type_builder->build();

DynamicTypeBuilder_ptr base_type_builder2 = DynamicTypeBuilderFactory::get_instance()-
→˓>create_uint32_builder();
auto base_type2 = base_type_builder2->build();

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓bitset_builder();
builder->add_member(0, "int2", base_type);
builder->add_member(1, "int20", base_type2);
// Apply members' annotations
builder->apply_annotation_to_member(0, ANNOTATION_BIT_BOUND_ID, "value", "2");
builder->apply_annotation_to_member(0, ANNOTATION_POSITION_ID, "value", "0");
builder->apply_annotation_to_member(1, ANNOTATION_BIT_BOUND_ID, "value", "20");
builder->apply_annotation_to_member(1, ANNOTATION_POSITION_ID, "value", "10"); // 8
→˓bits empty
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(builder.get());
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(pType);
data->set_byte_value(234, 0);
data->set_uint32_value(2340, 1);
octet bValue;
uint32_t uValue;
data->get_byte_value(bValue, 0);
data->get_uint32_value(uValue, 1);

Bitsets allows inheritance, exactly with the same OOP meaning. To inherit from another bitset, we must create the
bitset calling the create_child_struct_builder of the factory. This method is shared with structures and
will deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.

→˓get());

12.2.6 Bitmask

Bitmasks are similar to enumeration types, but their members work as bit flags that can be individually turned on and
off. Bit operations can be applied when testing or setting a bitmask value. DynamicData has the special methods
get_bitmask_value and set_bitmask_value which allow to retrieve or modify the full value instead of
accessing each bit.

Bitmasks can be bound to any number of bits up to 64.

uint32_t limit = 5; // Stores as "octet"

// Using Builders
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓bitmask_builder(limit);
builder->add_empty_member(0, "FIRST");
builder->add_empty_member(1, "SECOND");
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(builder.get());
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(pType);
data->set_bool_value(true, 2);
bool bValue;

(continues on next page)

12.2. Supported Types 95

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

data->get_bool_value(bValue, 0);
uint64_t fullValue;
data->get_bitmask_value(fullValue);

12.2.7 Structure

Structures are the common complex types, they allow to add any kind of members inside them. They don’t have any
value, they are only used to contain other types.

To manage the types inside the structure, users can call the get and set methods according to the kind of the type
inside the structure using their ids. If the structure contains a complex value, it should be used with loan_value
to access to it and return_loaned_value to release that pointer. DynamicData manages the counter of loaned
values and users can’t loan a value that has been loaned previously without calling return_loaned_value before.

The Ids must be consecutive starting by zero, and the DynamicType will change that Id if it doesn’t match with the
next value. If two members have the same Id, after adding the second one, the previous will change its id to the next
value. To get the id of a member by name, DynamicData exposes the method get_member_id_by_name.

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());

DynamicType_ptr struct_type = builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(struct_type);

data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);

Structures allow inheritance, exactly with the same OOP meaning. To inherit from another structure, we must create
the structure calling the create_child_struct_builder of the factory. This method is shared with bitsets and
will deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.

→˓get());

12.2.8 Union

Unions are a special kind of structures where only one of the members is active at the same time. To control these
members, users must set the discriminator type that is going to be used to select the current member calling the
create_union_type method. After the creation of the Dynamic Type, every member that is going to be added
needs at least one union_case_index to set how it is going to be selected and optionally if it is the default value
of the union.

DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓union_builder(discriminator.get());

builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type(), "", { 0 }, true); (continues on next page)

96 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

builder->add_member(0, "second", DynamicTypeBuilderFactory::get_instance()->create_
→˓int64_type(), "", { 1 }, false);
DynamicType_ptr union_type = builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(union_type);

data->set_int32_value(9, 0);
data->set_int64_value(13, 1);
uint64_t unionLabel;
data->get_union_label(unionLabel);

12.2.9 Sequence

A complex type that manages its members as a list of items allowing users to insert, remove or access to a member of
the list. To create this type users need to specify the type that it is going to store and optionally the size limit of the list.
To ease the memory management of this type, DynamicData has these methods: - insert_sequence_data:
Creates a new element at the end of the list and returns the id of the new element. - remove_sequence_data:
Removes the element of the given index and refresh the ids to keep the consistency of the list. - clear_data:
Removes all the elements of the list.

uint32_t length = 2;

DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓sequence_builder(base_type.get(), length);
DynamicType_ptr sequence_type = builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(sequence_type);

MemberId newId, newId2;
data->insert_int32_value(10, newId);
data->insert_int32_value(12, newId2);
data->remove_sequence_data(newId);

12.2.10 Array

Arrays are pretty similar to sequences with two main differences. The first one is that they can have multiple dimen-
sions and the other one is that they don’t need that the elements are stored consecutively. The method to create arrays
needs a vector of sizes to set how many dimensions are going to be managed, if users don’t want to set a limit can set the
value as zero on each dimension and it applies the default value (100). To ease the management of arrays every set
method in DynamicData class creates the item if there isn’t any in the given Id. Arrays also have methods to handle
the creation and deletion of elements like sequences, they are insert_array_data, remove_array_data and
clear_data. Additionally, there is a special method get_array_index that returns the position id giving a
vector of indexes on every dimension that the arrays support, that is useful in multidimensional arrays.

std::vector<uint32_t> lengths = { 2, 2 };

DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓array_builder(base_type.get(), lengths);
DynamicType_ptr array_type = builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(array_type);

(continues on next page)

12.2. Supported Types 97

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

MemberId pos = data->get_array_index({1, 0});
data->set_int32_value(11, pos);
data->set_int32_value(27, pos + 1);
data->clear_array_data(pos);

12.2.11 Map

Maps contain a list of pairs ‘key-value’ types, allowing users to insert, remove or modify the element types of the map.
The main difference with sequences is that the map works with pairs of elements and creates copies of the key element
to block the access to these elements.

To create a map, users must set the types of the key and the value elements and optionally the size limit of the map. To
add a new element to the map, DynamicData has the method insert_map_data that returns the ids of the key
and the value elements inside the map. To remove an element of the map there is the method remove_map_data
that uses the given id to find the key element and removes the key and the value elements from the map. The method
clear_data removes all the elements from the map.

uint32_t length = 2;

DynamicType_ptr base = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓map_builder(base.get(), base.get(), length);
DynamicType_ptr map_type = builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(map_type);

DynamicData_ptr key = DynamicDataFactory::get_instance()->create_data(base);
MemberId keyId;
MemberId valueId;
data->insert_map_data(key.get(), keyId, valueId);
MemberId keyId2;
MemberId valueId2;
key->set_int32_value(2);
data->insert_map_data(key.get(), keyId2, valueId2);

data->set_int32_value(53, valueId2);

data->remove_map_data(keyId);
data->remove_map_data(keyId2);

12.3 Complex examples

12.3.1 Nested structures

Structures allow to add other structures inside them, but users must take care that to access to these members they need
to call loan_value to get a pointer to the data and release it calling return_loaned_value. DynamicDatas
manages the counter of loaned values and users can’t loan a value that has been loaned previously without calling
return_loaned_value before.

98 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.9.3

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());
DynamicType_ptr struct_type = builder->build();

DynamicTypeBuilder_ptr parent_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder();
parent_builder->add_member(0, "child_struct", struct_type);
parent_builder->add_member(1, "second", DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_type());
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(parent_builder.
→˓get());

DynamicData* child_data = data->loan_value(0);
child_data->set_int32_value(5, 0);
child_data->set_uint64_value(13, 1);
data->return_loaned_value(child_data);

12.3.2 Structures inheritance

Structures can inherit from other structures. To do that DynamicTypeBuilderFactory has the method
create_child_struct_type that relates the given struct type with the new one. The resultant type contains the
members of the base class and the ones that users have added to it.

Structures support several levels of inheritance, creating recursively the members of all the types in the hierarchy of
the struct.

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());

DynamicTypeBuilder_ptr child_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_child_struct_builder(builder.get());
builder->add_member(2, "third", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());

DynamicType_ptr struct_type = child_builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(struct_type);

data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);
data->set_uint64_value(47, 2);

12.3.3 Alias of an alias

Alias types support recursion, so if users need to create an alias of another alias, it can be done calling
create_alias_type method giving the alias as a base type.

12.3. Complex examples 99

FastRTPS Documentation, Release 1.9.3

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(created_builder.get(), "alias");
DynamicTypeBuilder_ptr builder2 = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(builder.get(), "alias2");
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder2.get());
data->set_string_value("Dynamic Alias 2 String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);
DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pType, "alias");
DynamicType_ptr pAliasType2 = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pAliasType, "alias2");
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pAliasType);
data2->set_string_value("Dynamic Alias 2 String");

12.3.4 Unions with complex types

Unions support complex types, the available interface to access to them is calling loan_value to get a pointer to
the data and set this field as the active one and release it calling return_loaned_value.

DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓union_builder(discriminator.get());
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type(), "", { 0 }, true);

DynamicTypeBuilder_ptr struct_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder();
struct_builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_type());
struct_builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->
→˓create_uint64_type());
builder->add_member(1, "first", struct_builder.get(), "", { 1 }, false);

DynamicType_ptr union_type = builder->build();
DynamicData_ptr data = DynamicDataFactory::get_instance()->create_data(union_type);

DynamicData* child_data = data->loan_value(1);
child_data->set_int32_value(9, 0);
child_data->set_int64_value(13, 1);
data->return_loaned_value(child_data);

12.4 Serialization

Dynamic Types have their own pubsub type like any class generated with an IDL, and their management is pretty
similar to them.

100 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.9.3

DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicPubSubType pubsubType(pType);

// SERIALIZATION EXAMPLE
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);
uint32_t payloadSize = static_cast<uint32_t>(pubsubType.
→˓getSerializedSizeProvider(data)());
SerializedPayload_t payload(payloadSize);
pubsubType.serialize(data, &payload);

// DESERIALIZATION EXAMPLE
types::DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
pubsubType.deserialize(&payload, data2);

12.5 Important Notes

The most important part of Dynamic Types is memory management because every dynamic type and dynamic data
are managed with pointers. Every object stored inside of other dynamic object is managed by its owner, so users only
must take care of the objects that they have created calling to the factories. These two factories in charge to manage
these objects, and they must create and delete every object.

DynamicTypeBuilder* pBuilder = DynamicTypeBuilderFactory::get_instance()->create_
→˓uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);

DynamicTypeBuilderFactory::get_instance()->delete_builder(pBuilder);
DynamicDataFactory::get_instance()->delete_data(pData);

To ease this management, the library incorporates a special kind of shared pointers to call to the factories to delete
the object directly (DynamicTypeBuilder_ptr and DynamicData_ptr). The only restriction on using this
kind of pointers are the methods loan_value and return_loaned_value, because they return a pointer to
an object that is already managed by the library and using a DynamicData_ptr with them will cause a crash.
DynamicType will always be returned as DynamicType_ptr because there is no internal management of its
memory.

DynamicTypeBuilder_ptr pBuilder = DynamicTypeBuilderFactory::get_instance()->create_
→˓uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicData_ptr pData = DynamicDataFactory::get_instance()->create_data(pType);

12.6 Dynamic Types Discovery and Endpoint Matching

When using Dynamic Types support, Fast RTPS make use of an optional TopicDiscoveryKind QoS Policy and
TypeIdV1. At its current state, the matching will only verify that both endpoints are using the same topic type,
but will not negotiate about it.

This verification is done through MinimalTypeObject.

12.5. Important Notes 101

FastRTPS Documentation, Release 1.9.3

12.6.1 TopicDiscoveryKind

TopicAttribute to indicate which kind of Dynamic discovery we are using. Can take 3 different values:

• NO_CHECK: Default value. Will not perform any check for dynamic types.

• MINIMAL: Will check only at TypeInformation level (and MinimalTypeObject if needed).

• COMPLETE: Will perform a full check with CompleteTypeObject.

12.6.2 TypeObject (TypeObjectV1)

There are two kinds of TypeObject: MinimalTypeObject and CompleteTypeObject.

• MinimalTypeObject is used to check compatibility between types.

• CompleteTypeObject fully describes the type.

Both are defined in the annexes of DDS-XTypes V1.2 document so its details will not be covered in this document.

• TypeObject is an IDL union with both representation, Minimal and Complete.

12.6.3 TypeIdentifier (TypeIdV1)

TypeIdentifier is described too in the annexes of DDS-XTypes V1.2 document. It represents a full description of
basic types and has an EquivalenceKind for complex ones. An EquivalenceKind is a hash code of 14 octets,
as described by the DDS-XTypes V1.2 document.

12.6.4 TypeObjectFactory

Singleton class that manages the creation and access for all registered TypeObjects and TypeIdentifiers.
From a basic TypeIdentifier (in other words, a TypeIdentifier whose discriminator isn’t EK_MINIMAL
or EK_COMPLETE) can generate a full DynamicType.

12.6.5 Fastrtpsgen

FastRTPSGen has been upgraded to generate XXXTypeObject.h and XXXTypeObject.cxx files, taking XXX
as our IDL type. These files provide a small Type Factory for the type XXX. Generally, these files are not used directly,
as now the type XXX will register itself through its factory to TypeObjectFactory in its constructor, making very
easy the use of static types with dynamic types.

12.7 XML Dynamic Types

XML Dynamic Types allows eProsima Fast RTPS to create Dynamic Types directly defining them through XML. This
allows any application to change TopicDataTypes without the need to change its source code.

102 Chapter 12. Dynamic Topic Types

CHAPTER 13

Persistence

By default, the writer’s history is available for remote readers throughout writer’s life. You can configure Fast RTPS
to provide persistence between application executions. When a writer is created again, it will maintain the previous
history and a new remote reader will receive all samples sent by the writer throughout its life.

A reader keeps information on the latest change notified to the user for each matching writer. Persisting this informa-
tion, you could save bandwidth, as the reader will not ask the writers for changes already notified.

In summary, enabling this feature you will protect the state of endpoints against unexpected failures, as they will
continue communicating after being restarted as if they were just disconnected from the network.

Imagine, for instance, that a writer with a policy to keep its last 100 samples has its history full of changes and the
machine where it runs has a power failure. When the writer is started again, if a new reader is created, it will not
receive the 100 samples that were on the history of the writer. With persistence enabled, changes in the history of the
writer will be written to disk and read again when the writer is restarted.

With readers, the information written to disk is different. Only information about the last change notified to the user
is stored on disk. When a persistent reader is restarted, it will load this information, and will only ask the matching
writers to resend those changes that were not notified to the upper layers.

persistence_guid

Whenever an endpoint (reader or writer) is created, a unique identifier (GUID) is generated. If the
endpoint is restarted, a new GUID will be generated, and other endpoints won’t be able to know it
was the same one. For this reason, a specific parameter persistence_guid should be configured on
eprosima::fastrtps::rtps::EndpointAttributes. This parameter will be used as the primary key
of the data saved on disk, and will also be used to identify the endpoint on the DDS domain.

13.1 Configuration

We recommend you to look at the example of how to use this feature the distribution comes with while reading this
section. It is located in examples/RTPSTest_persistent

In order for the persistence feature to work, some specific eprosima::fastrtps::rtps::Writer or
eprosima::fastrtps::rtps::Reader attributes should be set:

103

FastRTPS Documentation, Release 1.9.3

• durabilityKind should be set to TRANSIENT

• persistence_guid should not be all zeros

• A persistence plugin should be configured either on the eprosima::fastrtps::rtps::Writer, the
eprosima::fastrtps::rtps::Reader or the eprosima::fastrtps::rtps::RTPSParticipant

You can select and configure the persistence plugin through eprosima::fastrtps::rtps::RTPSParticipant
attributes using properties. A eprosima::fastrtps::rtps::Property is defined by its name
(std::string) and its value (std::string). Throughout this page, there are tables showing you the
properties used by each persistence plugin.

13.2 Built-in plugins

The current version comes out with one persistence built-in plugin:

• SQLITE3: this plugin provides persistence on a local file using SQLite3 API.

13.2.1 PERSISTENCE:SQLITE3

This built-in plugin provides persistence on a local file using SQLite3 API.

You can activate this plugin using RTPSParticipant, Reader or Writer property dds.persistence.plugin with
the value builtin.SQLITE3. Next table shows you the properties used by this persistence plugin.

Table 1: Properties to configure Persistence::SQLITE3
Property name (all properties have
“dds.persistence.sqlite3.” prefix)

Property value

filename Name of the file used for persistent storage. Default
value: persistence.db

13.2.2 Example

This example shows you how to configure an RTPSParticipant to activate and configure PERSISTENCE:SQLITE3
plugin. It also configures a Writer to persist its history on local storage, and a Reader to persist the highest notified
sequence number on local storage.

RTPSParticipant attributes

eprosima::fastrtps::rtps::RTPSParticipantAttributes part_attr;

// Activate Persistence:SQLITE3 plugin
part_attr.properties.properties().emplace_back("dds.persistence.plugin", "builtin.
→˓SQLITE3");

// Configure Persistence:SQLITE3 plugin
part_attr.properties.properties().emplace_back("dds.persistence.sqlite3.filename",
→˓"example.db");

Writer attributes

104 Chapter 13. Persistence

FastRTPS Documentation, Release 1.9.3

eprosima::fastrtps::rtps::WriterAttributes writer_attr;

// Set durability to TRANSIENT
writer_attr.endpoint.durabilityKind = TRANSIENT;

// Set persistence_guid
writer_attr.endpoint.persistence_guid.guidPrefix.value[11] = 1;
writer_attr.endpoint.persistence_guid.entityId = 0x12345678;

Reader attributes

eprosima::fastrtps::rtps::ReaderAttributes reader_attr;

// Set durability to TRANSIENT
reader_attr.endpoint.durabilityKind = TRANSIENT;

// Set persistence_guid
reader_attr.endpoint.persistence_guid.guidPrefix.value[11] = 1;
reader_attr.endpoint.persistence_guid.entityId = 0x3456789A;

13.2. Built-in plugins 105

FastRTPS Documentation, Release 1.9.3

106 Chapter 13. Persistence

CHAPTER 14

XML profiles

The Configuration section shows how to configure entity attributes using XML profiles, but this section goes deeper
on it, explaining each field with its available values and how to compound the complete XML files.

eProsima Fast RTPS permits to load several XML files, each one containing XML profiles. In addition to the API
functions to load user XML files, at initialization eProsima Fast RTPS tries to locate and load several default XML
files. eProsima Fast RTPS offers the following options to use default XML files:

• Using an XML file with the name DEFAULT_FASTRTPS_PROFILES.xml and located in the current execution
path.

• Using an XML file which location is defined in the environment variable FAS-
TRTPS_DEFAULT_PROFILES_FILE.

An XML profile is defined by a unique name (or <transport_id> label in the Transport descriptors case) that is
used to reference the XML profile during the creation of a Fast RTPS entity, Transports, or Dynamic Topic Types.

14.1 Making an XML

An XML file can contain several XML profiles. The available profile types are Transport descriptors, XML Dynamic
Types, Participant profiles, Publisher profiles, and Subscriber profiles.

<transport_descriptor>
<transport_id>TransportProfile</transport_id>
<type>UDPv4</type>
<!-- ... -->

</transport_descriptor>

<types>
<type>

<struct name="struct_profile">
<!-- ... -->

</struct>
</type>

(continues on next page)

107

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</types>

<participant profile_name="participant_profile">
<rtps>
<!-- ... -->
</rtps>

</participant>

<publisher profile_name="publisher_profile">
<!-- ... -->

</publisher>

<subscriber profile_name="subscriber_profile">
<!-- ... -->

</subscriber>

The Fast-RTPS XML format uses some structures along several profiles types. For readability, the Common section
groups these common structures.

Finally, The Example section shows an XML file that uses all the possibilities. This example is useful as a quick
reference to look for a particular property and how to use it. This XSD file can be used as a quick reference too.

14.1.1 Loading and applying profiles

Before creating any entity, it’s required to load XML files using Domain::loadXMLProfilesFile function.
createParticipant, createPublisher and createSubscriber have a version that expects the profile
name as an argument. eProsima Fast RTPS searches the XML profile using this profile name and applies the XML
profile to the entity.

eprosima::fastrtps::Domain::loadXMLProfilesFile("my_profiles.xml");

Participant *participant = Domain::createParticipant("participant_xml_profile");
Publisher *publisher = Domain::createPublisher(participant, "publisher_xml_profile");
Subscriber *subscriber = Domain::createSubscriber(participant, "subscriber_xml_profile
→˓");

To load dynamic types from its declaration through XML see the Usage section of XML Dynamic Types.

14.2 Library settings

This section is devoted to general settings that are not constraint to specific entities (like participants, subscribers,
publishers) or functionality (like transports or types). All of them are gathered under the library_settings
profile.

<library_settings>
<intraprocess_delivery>FULL</intraprocess_delivery> <!-- OFF | USER_DATA_ONLY

→˓| FULL -->
</library_settings>

Currently only the Intra-process delivery feature is comprised here.

108 Chapter 14. XML profiles

https://github.com/eProsima/Fast-RTPS/blob/master/resources/xsd/fastRTPS_profiles.xsd

FastRTPS Documentation, Release 1.9.3

14.3 Transport descriptors

This section allows creating transport descriptors to be referenced by the Participant profiles. Once a well-defined
transport descriptor is referenced by a Participant profile, every time that profile is instantiated it will use or create
the related transport.

The following XML code shows the complete list of configurable parameters:

<transport_descriptors>
<transport_descriptor>

<transport_id>TransportId1</transport_id> <!-- string -->
<type>UDPv4</type> <!-- string -->
<sendBufferSize>8192</sendBufferSize> <!-- uint32 -->
<receiveBufferSize>8192</receiveBufferSize> <!-- uint32 -->
<TTL>250</TTL> <!-- uint8 -->
<non_blocking_send>false</non_blocking_send> <!-- boolean -->
<maxMessageSize>16384</maxMessageSize> <!-- uint32 -->
<maxInitialPeersRange>100</maxInitialPeersRange> <!-- uint32 -->
<interfaceWhiteList>

<address>192.168.1.41</address> <!-- string -->
<address>127.0.0.1</address> <!-- string -->

</interfaceWhiteList>
<wan_addr>80.80.55.44</wan_addr> <!-- string -->
<output_port>5101</output_port> <!-- uint16 -->
<keep_alive_frequency_ms>5000</keep_alive_frequency_ms> <!-- uint32 -->
<keep_alive_timeout_ms>25000</keep_alive_timeout_ms> <!-- uint32 -->
<max_logical_port>9000</max_logical_port> <!-- uint16 -->
<logical_port_range>100</logical_port_range> <!-- uint16 -->
<logical_port_increment>2</logical_port_increment> <!-- uint16 -->
<listening_ports>

<port>5100</port> <!-- uint16 -->
<port>5200</port> <!-- uint16 -->

</listening_ports>
<calculate_crc>false</calculate_crc> <!-- boolean -->
<check_crc>false</check_crc> <!-- boolean -->
<enable_tcp_nodelay>false</enable_tcp_nodelay> <!-- boolean -->
<tls><!-- TLS Section --></tls>

</transport_descriptor>

The XML label <transport_descriptors> can hold any number of <transport_descriptor>.

14.3. Transport descriptors 109

FastRTPS Documentation, Release 1.9.3

Name Description Values De-
fault

<transport_id>Unique name to identify each transport descriptor. string
<type> Type of the transport descriptor. UDPv4, UDPv6,

TCPv4, TCPv6
UDPv4

<sendBufferSize>Size in bytes of the socket send buffer. If the value is zero then
FastRTPS will use the default size from the configuration of the
sockets, using a minimum size of 65536 bytes.

uint32 0

<receiveBufferSize>Size in bytes of the socket receive buffer. If the value is zero then
FastRTPS will use the default size from the configuration of the
sockets, using a minimum size of 65536 bytes.

uint32 0

<TTL> Time To Live, only for UDP transports . uint8 1
<non_blocking_send>Whether to set the non-blocking send mode on the socket bool false
<maxMessageSize>The maximum size in bytes of the transport’s message buffer. uint32 65500
<maxInitialPeersRange>The maximum number of guessed initial peers to try to connect. uint32 4
<interfaceWhiteList>Allows defining Whitelist Interfaces. Whitelist Interfaces
<wan_addr> Public WAN address when using TCPv4 transports. This field is

optional if the transport doesn’t need to define a WAN address.
string with IPv4
Format
XXX.XXX.XXX.
XXX.

<output_port>Port used for output bound. If this field isn’t defined, the output port
will be random (UDP only).

uint16 0

<keep_alive_frequency_ms>Frequency in milliseconds for sending RTCP keep-alive requests
(TCP only).

uint32 50000

<keep_alive_timeout_ms>Time in milliseconds since sending the last keep-alive request to
consider a connection as broken. (TCP only).

uint32 10000

<max_logical_port>The maximum number of logical ports to try during RTCP negotia-
tions. (TCP only)

uint16 100

<logical_port_range>The maximum number of logical ports per request to try during
RTCP negotiations. (TCP only)

uint16 20

<logical_port_increment>Increment between logical ports to try during RTCP negotiation.
(TCP only)

uint16 2

<listening_ports>Local port to work as TCP acceptor for input connections. If not set,
the transport will work as TCP client only (TCP only).

List
<uint16>

<tls> Allows to define TLS related parameters and options (TCP only). TLS Configuration

RTCP is the control protocol for communications with RTPS over TCP/IP connections.

There are more examples of transports descriptors in Transports.

14.3.1 TLS Configuration

Fast-RTPS allows configuring TLS parameters through the <tls> tag of its Transport Descriptor. The full list of
options is listed here:

<transport_descriptors>
<transport_descriptor>

<transport_id>Test</transport_id>
<type>TCPv4</type>
<tls>

<password>Password</password>
<private_key_file>Key_file.pem</private_key_file>

(continues on next page)

110 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<rsa_private_key_file>RSA_file.pem</rsa_private_key_file>
<cert_chain_file>Chain.pem</cert_chain_file>
<tmp_dh_file>DH.pem</tmp_dh_file>
<verify_file>verify.pem</verify_file>
<verify_mode>

<verify>VERIFY_PEER</verify>
</verify_mode>
<options>

<option>NO_TLSV1</option>
<option>NO_TLSV1_1</option>

</options>
<verify_paths>

<verify_path>Path1</verify_path>
<verify_path>Path2</verify_path>
<verify_path>Path3</verify_path>

</verify_paths>
<verify_depth>55</verify_depth>
<default_verify_path>true</default_verify_path>
<handshake_role>SERVER</handshake_role>

</tls>
</transport_descriptor>

</transport_descriptors>

Name Description Values De-
fault

<password>Password of the private_key_file if pro-
vided (or RSA).

string

<private_key_file>Path to the private key certificate file. string
<rsa_private_key_file>Path to the private key RSA certificate

file.
string

<cert_chain_file>Path to the public certificate chain file. string
<tmp_dh_file>Path to the Diffie-Hellman parameters

file
string

<verify_file>Path to the CA (Certification- Author-
ity) file.

string

<verify_mode>Establishes the verification mode mask. VERIFY_NONE, VERIFY_PEER,
VERIFY_FAIL_IF_NO_PEER_CERT,
VERIFY_CLIENT_ONCE

<options>Establishes the SSL Context options
mask

DEFAULT_WORKAROUNDS, NO_COMPRESSION,
NO_SSLV2, NO_SSLV3, NO_TLSV1,
NO_TLSV1_1, NO_TLSV1_2, NO_TLSV1_3,
SINGLE_DH_USE

<verify_paths>Paths where the system will look for
verification files.

string

<verify_depth>Maximum allowed depth for verify in-
termediate certificates.

uint32

<default_verify_path>Default paths where the system will
look for verification files.

boolean false

<handshake_role>Role that the transport will take on
handshaking. On default, the acceptors
act as SERVER and the connectors as
CLIENT.

DEFAULT, SERVER, CLIENT DEFAULT

14.3. Transport descriptors 111

FastRTPS Documentation, Release 1.9.3

14.4 XML Dynamic Types

XML Dynamic Types allows creating eProsima Fast RTPS Dynamic Types directly defining them through XML. It
allows any application to change TopicDataTypes without modifying its source code.

14.4.1 XML Structure

The XML Types definition (<types> tag) can be placed similarly to the profiles tag inside the XML file. It can be a
stand-alone XML Types file or be a child of the Fast-RTPS XML root tag (<dds>). Inside the types tag, there must
be one or more type tags (<type>).

Stand-Alone:

<types>
<type>

<!-- Type definition -->
</type>
<type>

<!-- Type definition -->
<!-- Type definition -->

</type>
</types>

Rooted:

<dds>
<types>

<type>
<!-- Type definition -->

</type>
<type>

<!-- Type definition -->
<!-- Type definition -->

</type>
</types>

</dds>

Finally, each <type> tag can contain one or more Type definitions. Defining several types inside a <type> tag or
defining each type in its <type> tag has the same result.

14.4.2 Type definition

Enum

The <enum> type is defined by its name and a set of enumerators, each of them with its name and its (optional)
value.

Example:

112 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

XML C++

<enum name="MyEnum">
<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>

DynamicTypeBuilder_ptr enum_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_enum_builder();
enum_builder->set_name("MyEnum");
enum_builder->add_empty_member(0, "A");
enum_builder->add_empty_member(1, "B");
enum_builder->add_empty_member(2, "C");
DynamicType_ptr enum_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(enum_builder.
→˓get());

Typedef

The <typedef> type is defined by its name and its value or an inner element for complex types. <typedef>
corresponds to Alias in Dynamic Types glossary.

Example:

XML C++

<typedef name="MyAliasEnum" type=
→˓"nonBasic" nonBasicTypeName="MyEnum"/>

<typedef name="MyAliasArray" type="int32
→˓" arrayDimension="2,2"/>

DynamicTypeBuilder_ptr alias1_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_alias_builder(enum_
→˓builder.get(), "MyAlias1");
DynamicType_ptr alias1_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(alias1_builder.
→˓get());

std::vector<uint32_t> sequence_lengths =
→˓{ 2, 2 };
DynamicTypeBuilder_ptr int_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr array_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_array_builder(int_
→˓builder.get(), sequence_lengths);
DynamicTypeBuilder_ptr alias2_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_alias_builder(array_
→˓builder.get(), "MyAlias2");
DynamicType_ptr alias2_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(alias2_builder.
→˓get());

Struct

The <struct> type is defined by its name and inner members.

Example:

14.4. XML Dynamic Types 113

FastRTPS Documentation, Release 1.9.3

XML C++

<struct name="MyStruct">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>

DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
DynamicTypeBuilder_ptr struct_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_struct_builder();

struct_builder->set_name("MyStruct");
struct_builder->add_member(0, "first",
→˓long_builder.get());
struct_builder->add_member(1, "second",
→˓long_long_builder.get());
DynamicType_ptr struct_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(struct_builder.
→˓get());

Structs can inherit from another structs:

114 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

XML C++

<struct name="ParentStruct">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>
<struct name="ChildStruct" baseType=
→˓"ParentStruct">

<member name="third" type="int32"/>
<member name="fourth" type="int64"/>

</struct>

DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
DynamicTypeBuilder_ptr struct_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_struct_builder();

struct_builder->set_name("ParentStruct");
struct_builder->add_member(0, "first",
→˓long_builder.get());
struct_builder->add_member(1, "second",
→˓long_long_builder.get());
DynamicType_ptr struct_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(struct_builder.
→˓get());

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_

→˓instance()->create_child_struct_
→˓builder(struct_builder.get());

child_builder->set_name("ChildStruct");
child_builder->add_member(0, "third",
→˓long_builder.get());
child_builder->add_member(1, "fourth",
→˓long_long_builder.get());
DynamicType_ptr child_struct_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(child_builder.
→˓get());

Union

The <union> type is defined by its name, a discriminator and a set of cases. Each case has one or more
caseDiscriminator and a member.

Example:

14.4. XML Dynamic Types 115

FastRTPS Documentation, Release 1.9.3

XML C++

<union name="MyUnion">
<discriminator type="byte"/>
<case>

<caseDiscriminator value="0"/>
<caseDiscriminator value="1"/>
<member name="first" type="int32

→˓"/>
</case>
<case>

<caseDiscriminator value="2"/>
<member name="second" type=

→˓"nonBasic" nonBasicTypeName="MyStruct"/
→˓>

</case>
<case>

<caseDiscriminator value="default
→˓"/>

<member name="third" type=
→˓"nonBasic" nonBasicTypeName="int64"/>

</case>
</union>

DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
DynamicTypeBuilder_ptr struct_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_struct_builder();
DynamicTypeBuilder_ptr octet_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_byte_builder();
DynamicTypeBuilder_ptr union_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_union_builder(octet_
→˓builder.get());

union_builder->set_name("MyUnion");
union_builder->add_member(0, "first",
→˓long_builder.get(), "", { 0, 1 },
→˓false);
union_builder->add_member(1, "second",
→˓struct_builder.get(), "", { 2 },
→˓false);
union_builder->add_member(2, "third",
→˓long_long_builder.get(), "", { },
→˓true);
DynamicType_ptr union_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(union_builder.
→˓get());

Bitset

The <bitset> type is defined by its name and inner bitfields.

Example:

116 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

XML C++

<bitset name="MyBitSet">
<bitfield name="a" bit_bound="3"/>
<bitfield name="b" bit_bound="1"/>
<bitfield bit_bound="4"/>
<bitfield name="c" bit_bound="10"/>
<bitfield name="d" bit_bound="12"

→˓type="int16"/>
</bitset>

DynamicTypeBuilderFactory* m_factory =
→˓DynamicTypeBuilderFactory::get_
→˓instance();
DynamicTypeBuilder_ptr builder_ptr = m_
→˓factory->create_bitset_builder();
builder_ptr->add_member(0, "a", m_
→˓factory->create_byte_builder()->
→˓build());
builder_ptr->add_member(1, "b", m_
→˓factory->create_bool_builder()->
→˓build());
builder_ptr->add_member(3, "c", m_
→˓factory->create_uint16_builder()->
→˓build());
builder_ptr->add_member(4, "d", m_
→˓factory->create_int16_builder()->
→˓build());
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_BIT_BOUND_ID,
→˓"value", "3");
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_POSITION_ID,
→˓"value", "0");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_BIT_BOUND_ID,
→˓"value", "1");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_POSITION_ID,
→˓"value", "3");
builder_ptr->apply_annotation_to_
→˓member(3, ANNOTATION_BIT_BOUND_ID,
→˓"value", "10");
builder_ptr->apply_annotation_to_
→˓member(3, ANNOTATION_POSITION_ID,
→˓"value", "8"); // 4 empty
builder_ptr->apply_annotation_to_
→˓member(4, ANNOTATION_BIT_BOUND_ID,
→˓"value", "12");
builder_ptr->apply_annotation_to_
→˓member(4, ANNOTATION_POSITION_ID,
→˓"value", "18");
builder_ptr->set_name("MyBitSet");

A bitfield without name is an inaccessible set of bits. Bitfields can specify their management type to ease their
modification and access. The bitfield’s bit_bound is mandatory and cannot be bigger than 64.

Bitsets can inherit from another bitsets:

14.4. XML Dynamic Types 117

FastRTPS Documentation, Release 1.9.3

XML C++

<bitset name="ParentBitSet">
<bitfield name="a" bit_bound="3"/>
<bitfield name="b" bit_bound="1"/>

</bitset>

<bitset name="ChildBitSet" baseType=
→˓"ParentBitSet">

<bitfield name="c" bit_bound="30"/>
<bitfield name="d" bit_bound="13"/>

</bitset>

DynamicTypeBuilderFactory* m_factory =
→˓DynamicTypeBuilderFactory::get_
→˓instance();
DynamicTypeBuilder_ptr builder_ptr = m_
→˓factory->create_bitset_builder();
builder_ptr->add_member(0, "a", m_
→˓factory->create_byte_builder()->
→˓build());
builder_ptr->add_member(1, "b", m_
→˓factory->create_bool_builder()->
→˓build());
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_BIT_BOUND_ID,
→˓"value", "3");
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_POSITION_ID,
→˓"value", "0");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_BIT_BOUND_ID,
→˓"value", "1");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_POSITION_ID,
→˓"value", "3");
builder_ptr->set_name("ParentBitSet");

DynamicTypeBuilder_ptr child_ptr = m_
→˓factory->create_child_struct_
→˓builder(builder_ptr.get());
child_ptr->add_member(3, "c", m_factory->
→˓create_uint16_builder()->build());
child_ptr->add_member(4, "d", m_factory->
→˓create_int16_builder()->build());
child_ptr->apply_annotation_to_member(3,
→˓ANNOTATION_BIT_BOUND_ID, "value", "10
→˓");
child_ptr->apply_annotation_to_member(3,
→˓ANNOTATION_POSITION_ID, "value", "8");
→˓// 4 empty
child_ptr->apply_annotation_to_member(4,
→˓ANNOTATION_BIT_BOUND_ID, "value", "12
→˓");
child_ptr->apply_annotation_to_member(4,
→˓ANNOTATION_POSITION_ID, "value", "18");
child_ptr->set_name("ChildBitSet");

Bitmask

The <bitmask> type is defined by its name and inner bit_values.

Example:

118 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

XML C++

<bitmask name="MyBitMask" bit_bound="8">
<bit_value name="flag0" position="0"/

→˓>
<bit_value name="flag1"/>
<bit_value name="flag2" position="2"/

→˓>
<bit_value name="flag5" position="5"/

→˓>
</bitmask>

DynamicTypeBuilderFactory* m_factory =
→˓DynamicTypeBuilderFactory::get_
→˓instance();
DynamicTypeBuilder_ptr builder_ptr = m_
→˓factory->create_bitmask_builder(8);
builder_ptr->add_empty_member(0, "flag0
→˓");
builder_ptr->add_empty_member(1, "flag1
→˓");
builder_ptr->add_empty_member(2, "flag2
→˓");
builder_ptr->add_empty_member(5, "flag5
→˓");
builder_ptr->set_name("MyBitMask");

The bitmask can specify its bit_bound, this is, the number of bits that the type will manage. Internally will be converted
to the minimum type that allows to store them. The maximum allowed bit_bound is 64. Bit_values can define their
position inside the bitmask.

14.4.3 Member types

Member types are any type that can belong to a <struct> or a <union>, or be aliased by a <typedef>.

Basic types

The identifiers of the available basic types are:

boolean int64 float128
byte uint16 string
char uint32 wstring
wchar uint64
int16 float32
int32 float64

All of them are defined as follows:

XML C++

<member name="my_long" type="int64"/> DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
long_long_builder->set_name("my_long");
DynamicType_ptr long_long_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(long_long_
→˓builder.get());

Arrays

Arrays are defined in the same way as any other member type but add the attribute arrayDimensions. The format
of this dimensions attribute is the size of each dimension separated by commas.

14.4. XML Dynamic Types 119

FastRTPS Documentation, Release 1.9.3

Example:

XML C++

<member name="long_array" type="int32"
→˓arrayDimensions="2,3,4"/>

std::vector<uint32_t> lengths = { 2, 3,
→˓4 };
DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr array_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_array_builder(long_
→˓builder.get(), lengths);
array_builder->set_name("long_array");
DynamicType_ptr array_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(array_builder.
→˓get());

It’s IDL analog would be:

long long_array[2][3][4];

Sequences

Sequences are defined by its name, its content type, and its sequenceMaxLength. The type of its content should
be defined by its type attribute.

Example:

XML C++

<typedef name="my_sequence_inner" type=
→˓"int32" sequenceMaxLength="2"/>
<struct name="SeqSeqStruct">

<member name="my_sequence_sequence"
→˓type="nonBasic" nonBasicTypeName="my_
→˓sequence_inner" sequenceMaxLength="3"/>
</struct>

uint32_t child_len = 2;
DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr seq_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_sequence_
→˓builder(long_builder.get(),

child_len);
uint32_t length = 3;
DynamicTypeBuilder_ptr seq_seq_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_sequence_builder(

seq_builder.get(), length);
seq_seq_builder->set_name("my_sequence_
→˓sequence");
DynamicType_ptr seq_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(seq_seq_
→˓builder.get());

The example shows a sequence with sequenceMaxLength 3 of sequences with sequenceMaxLength 2 with
<int32> contents. As IDL would be:

120 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

sequence<sequence<long,2>,3> my_sequence_sequence;

Note that the inner sequence has been defined before.

Maps

Maps are similar to sequences, but they need to define two types instead of one. One type defines its key_type,
and the other type defines its elements types. Again, both types can be defined as attributes or as members, but when
defined as members, they should be contained in another XML element (<key_type> and <type> respectively).

Example:

XML C++

<typedef name="my_map_inner" type="int32
→˓" key_type="int32" mapMaxLength="2"/>
<struct name="MapMapStruct">

<member name="my_map_map" type=
→˓"nonBasic" nonBasicTypeName="my_map_
→˓inner" key_type="int32" mapMaxLength="2
→˓"/>
</struct>

uint32_t length = 2;
DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr map_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_map_builder(long_
→˓builder.get(),

long_builder.get(), length);

DynamicTypeBuilder_ptr map_map_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_map_builder(long_
→˓builder.get(),

map_builder.get(), length);
map_map_builder->set_name("my_map_map");
DynamicType_ptr map_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(map_map_
→˓builder.get());

Is equivalent to the IDL:

map<long,map<long,long,2>,2> my_map_map;

Complex types

Once defined, complex types can be used as members in the same way a basic or array type would be.

Example:

<struct name="OtherStruct">
<member name="my_enum" type="nonBasic" nonBasicTypeName="MyEnum"/>
<member name="my_struct" type="nonBasic" nonBasicTypeName="MyStruct"

→˓arrayDimensions="5"/>
</struct>

14.4.4 Usage

In the application that will make use of XML Types, it’s mandatory to load the XML file that defines the types before
trying to instantiate DynamicPubSubTypes of these types. It’s important to remark that only <struct> types generate
usable DynamicPubSubType instances.

14.4. XML Dynamic Types 121

FastRTPS Documentation, Release 1.9.3

// Load the XML File
XMLP_ret ret = XMLProfileManager::loadXMLFile("types.xml");
// Create the "MyStructPubSubType"
DynamicPubSubType *pbType = XMLProfileManager::CreateDynamicPubSubType("MyStruct");
// Create a "MyStruct" instance
DynamicData* data = DynamicDataFactory::get_instance()->create_data(pbType->
→˓GetDynamicType());

14.5 Participant profiles

Participant profiles allow declaring Participant configuration from an XML file. All the configuration options for
the participant belong to the <rtps> label. The attribute profile_name will be the name that the Domain will
associate to the profile to load it as shown in Loading and applying profiles.

<participant profile_name="part_profile_name">
<rtps>

<name>Participant Name</name> <!-- String -->

<defaultUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</defaultUnicastLocatorList>

<defaultMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</defaultMulticastLocatorList>

<sendSocketBufferSize>8192</sendSocketBufferSize> <!-- uint32 -->

<listenSocketBufferSize>8192</listenSocketBufferSize> <!-- uint32 -->

<builtin>
<!-- BUILTIN -->

</builtin>

<port>
<portBase>7400</portBase> <!-- uint16 -->
<domainIDGain>200</domainIDGain> <!-- uint16 -->
<participantIDGain>10</participantIDGain> <!-- uint16 -->
<offsetd0>0</offsetd0> <!-- uint16 -->
<offsetd1>1</offsetd1> <!-- uint16 -->
<offsetd2>2</offsetd2> <!-- uint16 -->
<offsetd3>3</offsetd3> <!-- uint16 -->

</port>

<participantID>99</participantID> <!-- int32 -->

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod> <!-- uint32 -->
<periodMillisecs>1000</periodMillisecs> <!-- uint32 -->

(continues on next page)

122 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</throughputController>

<userTransports>
<transport_id>TransportId1</transport_id> <!-- string -->
<transport_id>TransportId2</transport_id> <!-- string -->

</userTransports>

<useBuiltinTransports>false</useBuiltinTransports> <!-- boolean -->

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<allocation>
<!-- ALLOCATION -->

</allocation>

</rtps>
</participant>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• DURATION means it expects a DurationType.

• For BUILTIN details, please refer to Built-in parameters.

• For ALLOCATION details, please refer to Participant allocation parameters.

List with the possible configuration parameter:

14.5. Participant profiles 123

FastRTPS Documentation, Release 1.9.3

Name Description Values De-
fault

<name> Participant’s name. It’s not the same field that profile_name. string_255
<defaultUnicastLocatorList>List of default input unicast locators. It expects a LocatorListType. LocatorListType
<defaultMulticastLocatorList>List of default input multicast locators. It expects a LocatorListType. LocatorListType
<sendSocketBufferSize>Size in bytes of the output socket buffer. If the value is zero then Fas-

tRTPS will use the default size from the configuration of the sockets,
using a minimum size of 65536 bytes.

uint32 0

<listenSocketBufferSize>Size in bytes of the input socket buffer. If the value is zero then Fas-
tRTPS will use the default size from the configuration of the sockets,
using a minimum size of 65536 bytes.

uint32 0

<builtin> Built-in parameters. Explained in the Built-in parameters section. Built-in
parameters

<port> Allows defining the port parameters and gains related to the RTPS pro-
tocol. Explained in the Port section.

Port

<participantID>Participant’s identifier. Typically it will be automatically generated by
the Domain.

int32 0

<throughputController>Allows defining a maximum throughput. Explained in the Throughput
section.

Throughput

<userTransports>Transport descriptors to be used by the participant. List
<string>

<useBuiltinTransports>Boolean field to indicate to the system that the participant will use the
default builtin transport independently of its <userTransports>.

bool true

<propertiesPolicy>Additional configuration properties. It expects a PropertiesPolicyType. Proper-
tiesPolicy-
Type

<allocation> Configuration regarding allocation behavior. It expects a Participant
allocation parameters

Participant
allocation
parameters

Port Configuration

Name Description Values Default
<portBase> Base port. uint16 7400
<domainIDGain> Gain in domainId. uint16 250
<participantIDGain> Gain in participantId. uint16 2
<offsetd0> Multicast metadata offset. uint16 0
<offsetd1> Unicast metadata offset. uint16 10
<offsetd2> Multicast user data offset. uint16 1
<offsetd3> Unicast user data offset. uint16 11

14.5.1 Participant allocation parameters

This section of the Participant's rtps configuration allows defining parameters related with allocation behav-
ior on the participant.

<allocation>
<remote_locators>

<max_unicast_locators>4</max_unicast_locators> <!-- uint32 -->
<max_multicast_locators>1</max_multicast_locators> <!-- uint32 -->

</remote_locators>
(continues on next page)

124 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<total_participants>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_participants>
<total_readers>

<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_readers>
<total_writers>

<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_writers>
</allocation>

Name Description Values De-
fault

<max_unicast_locators>Maximum number of unicast locators expected on a remote entity. It is rec-
ommended to use the maximum number of network interfaces found on any
machine the participant will connect to.

UInt32 4

<max_multicast_locators>Maximum number of multicast locators expected on a remote entity. May be
set to zero to disable multicast traffic.

UInt32 1

<total_participants>Participant Allocation Configuration related to the total number of partici-
pants in the domain (local and remote).

Allo-
cation
Configu-
ration

<total_readers>Participant Allocation Configuration related to the total number of readers on
each participant (local and remote).

Allo-
cation
Configu-
ration

<total_writers>Participant Allocation Configuration related to the total number of writers on
each participant (local and remote).

Allo-
cation
Configu-
ration

14.5.2 Built-in parameters

This section of the Participant's rtps configuration allows defining built-in parameters.

<builtin>
<discovery_config>

<discoveryProtocol>NONE</discoveryProtocol> <!-- DiscoveryProtocol enum -->

<ignoreParticipantFlags>FILTER_DIFFERENT_HOST</ignoreParticipantFlags> <!--
→˓ParticipantFlags enum -->

<EDP>SIMPLE</EDP> <!-- string -->

<leaseDuration>
(continues on next page)

14.5. Participant profiles 125

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<!-- DURATION -->
</leaseDuration>

<leaseAnnouncement>
<!-- DURATION -->

</leaseAnnouncement>

<initialAnnouncements>
<!-- INITIAL_ANNOUNCEMENTS -->

</initialAnnouncements>

<simpleEDP>
<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER> <!-- boolean -->
<PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER> <!-- boolean -->

</simpleEDP>

<staticEndpointXMLFilename>filename.xml</staticEndpointXMLFilename> <!--
→˓string -->

</discovery_config>

<avoid_builtin_multicast>true</avoid_builtin_multicast>

<use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol> <!-- boolean -
→˓->

<domainId>4</domainId> <!-- uint32 -->

<metatrafficUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</metatrafficUnicastLocatorList>

<metatrafficMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</metatrafficMulticastLocatorList>

<initialPeersList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</initialPeersList>

<readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</readerHistoryMemoryPolicy>

<writerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</writerHistoryMemoryPolicy>

<mutation_tries>55</mutation_tries>
</builtin>

126 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

Name Description Values Default
<discovery_config> This is the main tag where discovery-

related settings can be configured.
discovery_config

<ignoreParticipantFlags>Restricts metatraffic using several fil-
tering criteria.

ignoreParticipantFlags No
filtering.

<avoid_builtin_multicast>Restricts metatraffic multicast traffic
to PDP only.

Boolean true

<use_WriterLivelinessProtocol>Indicates to use the WriterLiveliness
protocol.

Boolean true

<domainId> DomainId to be used by the
RTPSParticipant.

UInt32 0

<metatrafficUnicastLocatorList>Metatraffic Unicast Locator List List of LocatorListType
<metatrafficMulticastLocatorList>Metatraffic Multicast Locator List List of LocatorListType
<initialPeersList> Initial peers. List of LocatorListType
<readerHistoryMemoryPolicy>Memory policy for builtin readers. PREALLOCATED,

PREALLOCATED_WITH_REALLOC,
DYNAMIC

PREALLOCATED

<writerHistoryMemoryPolicy>Memory policy for builtin writers. PREALLOCATED,
PREALLOCATED_WITH_REALLOC,
DYNAMIC

PREALLOCATED

<mutation_tries> Number of different ports to try if
reader’s physical port is already in
use.

UInt32 100

discovery_config

14.5. Participant profiles 127

FastRTPS Documentation, Release 1.9.3

Name Description Values Default
<discoveryProtocol> Indicates which kind of

PDP protocol the partici-
pant must use.

SIMPLE, CLIENT,
SERVER, BACKUP

SIMPLE

<EDP>
• If set to SIMPLE,
<simpleEDP>
would be used.

• If set to STATIC,
StaticEDP based
on an XML file
would be used
with the contents of
<staticEndpointXMLFilename>.

SIMPLE, STATIC SIMPLE

<simpleEDP> Attributes of the Sim-
pleEDP protocol

simpleEDP

<leaseDuration> Indicates how long
this RTPSParticipant
should consider remote
RTPSParticipants alive.

DurationType 130 s

<leaseAnnouncement> The period for the
RTPSParticipant to send
its Discovery Message
to all other discovered
RTPSParticipants as well
as to all Multicast ports.

DurationType 40 s

<initialAnnouncements>Allows the user to config-
ure the number and period
of the initial RTPSpar-
ticipant’s Discovery mes-
sages.

Initial Announcements

<staticEndpointXMLFilename>StaticEDP XML filename.
Only necessary if <EDP>
is set to STATIC

string

ignoreParticipantFlags

• FILTER_DIFFERENT_HOST all metadata from another host would be discarded.

• FILTER_DIFFERENT_PROCESS all metadata from another process on the same host would be discarded.

• FILTER_SAME_PROCESS all metadata from our own process would be discarded.

• FILTER_DIFFERENT_PROCESS | FILTER_SAME_PROCESS all metadata from our own host would be
discarded.

simpleEDP

Name Description Values De-
fault

<PUBWRITER_SUBREADER>Indicates if the participant must use Publication Writer and Sub-
scription Reader.

Boolean true

<PUBREADER_SUBWRITER>Indicates if the participant must use Publication Reader and Sub-
scription Writer.

Boolean true

128 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

Initial Announcements

Name Description Val-
ues

De-
fault

<count>Number of Discovery Messages to send at the period specified by <period>. After these
announcements, the RTPSParticipant will continue sending its Discovery Messages at the
<leaseAnnouncement> rate.

Uint320

<period>The period for the RTPSParticipant to send its first <count> Discovery Messages. Du-
ra-
tionType

500
ms

14.6 Publisher profiles

Publisher profiles allow declaring Publisher configuration from an XML file. The attribute profile_name is the
name that the Domain associates to the profile to load it as shown in the Loading and applying profiles section.

<publisher profile_name="pub_profile_name">
<topic>

<!-- TOPIC_TYPE -->
</topic>

<qos>
<!-- QOS -->

</qos>

<times> <!-- writerTimesType -->
<initialHeartbeatDelay>

<!-- DURATION -->
</initialHeartbeatDelay>
<heartbeatPeriod>

<!-- DURATION -->
</heartbeatPeriod>
<nackResponseDelay>

<!-- DURATION -->
</nackResponseDelay>
<nackSupressionDuration>

<!-- DURATION -->
</nackSupressionDuration>

</times>

<unicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</multicastLocatorList>

(continues on next page)

14.6. Publisher profiles 129

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod> <!-- uint32 -->
<periodMillisecs>1000</periodMillisecs> <!-- uint32 -->

</throughputController>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<userDefinedID>55</userDefinedID> <!-- Int16 -->

<entityID>66</entityID> <!-- Int16 -->

<matchedSubscribersAllocation>
<initial>0</initial> <!-- uint32 -->
<maximum>0</maximum> <!-- uint32 -->
<increment>1</increment> <!-- uint32 -->

</matchedSubscribersAllocation>

</publisher>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• DURATION means it expects a DurationType.

• For QOS details, please refer to QOS.

• TOPIC_TYPE is detailed in section Topic Type.

130 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

Name Description Values Default
<topic> Topic Type configuration of the pub-

lisher.
Topic Type

<qos> Publisher QOS configuration. QOS
<times> It allows configuring some time related

parameters of the publisher.
Times

<unicastLocatorList>List of input unicast locators. It expects
a LocatorListType.

List of LocatorListType

<multicastLocatorList>List of input multicast locators. It ex-
pects a LocatorListType.

List of LocatorListType

<throughputController>Limits the output bandwidth of the pub-
lisher.

Throughput

<historyMemoryPolicy>Memory allocation kind for publisher’s
history.

PREALLOCATED,
PREALLOCATED_WITH_REALLOC,
DYNAMIC

PREALLOCATED

<propertiesPolicy>Additional configuration properties. PropertiesPolicyType
<userDefinedID> Used for StaticEndpointDiscovery. Int16 -1
<entityID> EntityId of the endpoint. Int16 -1
<matchedSubscribersAllocation>Publisher Allocation Configuration re-

lated to the number of matched sub-
scribers.

Allocation Configuration

Times

Name Description Values De-
fault

<initialHeartbeatDelay>Initial heartbeat delay. Dura-
tionType

~45
ms

<heartbeatPeriod> Periodic HB period. Dura-
tionType

3 s

<nackResponseDelay>Delay to apply to the response of a ACKNACK message. Dura-
tionType

~45
ms

<nackSupressionDuration>This time allows the RTPSWriter to ignore nack messages too
soon after the data has been sent.

Dura-
tionType

0 ms

14.7 Subscriber profiles

Subscriber profiles allow declaring Subscriber configuration from an XML file. The attribute profile_name is the
name that the Domain associates to the profile to load it as shown in Loading and applying profiles.

<subscriber profile_name="sub_profile_name">
<topic>

<!-- TOPIC_TYPE -->
</topic>

<qos>
<!-- QOS -->

</qos>

<times> <!-- readerTimesType -->
<initialAcknackDelay>

(continues on next page)

14.7. Subscriber profiles 131

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<!-- DURATION -->
</initialAcknackDelay>
<heartbeatResponseDelay>

<!-- DURATION -->
</heartbeatResponseDelay>

</times>

<unicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</multicastLocatorList>

<expectsInlineQos>true</expectsInlineQos> <!-- boolean -->

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<userDefinedID>55</userDefinedID> <!-- Int16 -->

<entityID>66</entityID> <!-- Int16 -->

<matchedPublishersAllocation>
<initial>0</initial> <!-- uint32 -->
<maximum>0</maximum> <!-- uint32 -->
<increment>1</increment> <!-- uint32 -->

</matchedPublishersAllocation>

</subscriber>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• DURATION means it expects a DurationType.

• For QOS details, please refer to QOS.

• TOPIC_TYPE is detailed in section Topic Type.

132 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

Name Description Values Default
<topic> Topic Type configuration of the sub-

scriber.
Topic Type

<qos> Subscriber QOS configuration. QOS
<times> It allows configuring some time related

parameters of the subscriber.
Times

<unicastLocatorList>List of input unicast locators. It expects
a LocatorListType.

List of LocatorListType

<multicastLocatorList>List of input multicast locators. It ex-
pects a LocatorListType.

List of LocatorListType

<expectsInlineQos>It indicates if QOS is expected inline. Boolean false
<historyMemoryPolicy>Memory allocation kind for subscriber’s

history.
PREALLOCATED,
PREALLOCATED_WITH_REALLOC,
DYNAMIC

PREALLOCATED

<propertiesPolicy>Additional configuration properties. PropertiesPolicyType
<userDefinedID> Used for StaticEndpointDiscovery. Int16 -1
<entityID> EntityId of the endpoint. Int16 -1
<matchedPublishersAllocation>Subscriber Allocation Configuration re-

lated to the number of matched publish-
ers.

Allocation Configuration

Times

Name Description Values De-
fault

<initialAcknackDelay> Initial AckNack delay. Dura-
tionType

~45 ms

<heartbeatResponseDelay>Delay to be applied when a heartbeat message is re-
ceived.

Dura-
tionType

~4.5
ms

14.8 Common

In the above profiles, some types are used in several different places. To avoid too many details, some of that places
have a tag like LocatorListType that indicates that field is defined in this section.

14.8.1 LocatorListType

It represents a list of Locator_t. LocatorListType is normally used as an anonymous type, this is, it hasn’t its own
label. Instead, it is used inside other configuration parameter labels that expect a list of locators and give it sense,
for example, in <defaultUnicastLocatorList>. The locator kind is defined by its own tag and can take the
values <udpv4>, <tcpv4>, <udpv6>, and <tcpv6>:

<defaultUnicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, typical UDP usage -->
<port>7400</port> <!-- uint32 -->
<address>192.168.1.41</address>

</udpv4>
(continues on next page)

14.8. Common 133

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), useful in TCP transports -->
<physical_port>5100</physical_port> <!-- uint16 -->
<port>7400</port> <!-- uint16 -->
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>
<locator>

<tcpv6>
<!-- Both physical and logical (port), useful in TCP transports -->
<physical_port>5100</physical_port> <!-- uint16 -->
<port>7400</port> <!-- uint16 -->
<address>fe80::55e3:290:165:5af8</address>

</tcpv6>
</locator>

</defaultUnicastLocatorList>

In this example, there are one locator of each kind in <defaultUnicastLocatorList>.

Let’s see each possible Locator’s field in detail:

Name Description Values De-
fault

<port> RTPS port number of the locator. Physical port in UDP,
logical port in TCP.

Uint32 0

<physical_port>TCP’s physical port. Uint32 0
<address> IP address of the locator. string with ex-

pected format
“”

<unique_lan_id>The LAN ID uniquely identifies the LAN the locator be-
longs to (TCPv4 only).

string (16 bytes)

<wan_address>WAN IPv4 address (TCPv4 only). string with IPv4
Format

0.0.
0.0

14.8.2 PropertiesPolicyType

PropertiesPolicyType (XML label <propertiesPolicy>) allows defining a set of generic properties. It’s useful
at defining extended or custom configuration parameters.

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name> <!-- string -->
<value>Property1Value</value> <!-- string -->
<propagate>false</propagate> <!-- boolean -->

(continues on next page)

134 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</property>
<property>

<name>Property2Name</name> <!-- string -->
<value>Property2Value</value> <!-- string -->
<propagate>true</propagate> <!-- boolean -->

</property>
</properties>

</propertiesPolicy>

Name Description Values De-
fault

<name> Name to identify the property. string
<value> Property’s value. string
<propagate> Indicates if it is going to be serialized along with the object it belongs

to.
Boolean false

14.8.3 DurationType

DurationType expresses a period of time and it’s commonly used as an anonymous type, this is, it hasn’t its own label.
Instead, it is used inside other configuration parameter labels that give it sense, like <leaseAnnouncement> or
<leaseDuration>.

<discovery_config>
<leaseDuration>INFINITE</leaseDuration> <!-- string -->

<leaseDuration>
<sec>500</sec> <!-- int32 -->
<nanosec>0</nanosec> <!-- uint32 -->

</leaseDuration>

<leaseAnnouncement>
<sec>1</sec> <!-- int32 -->
<nanosec>856000</nanosec> <!-- uint32 -->

</leaseAnnouncement>
</discovery_config>

Duration time can be defined through <sec> plus <nanosec> labels (see table below). An infi-
nite value can be specified by using the values DURATION_INFINITY, DURATION_INFINITE_SEC and
DURATION_INFINITE_NSEC.

Name Description Values Default
<sec> Number of seconds. Int32 0
<nanosec> Number of nanoseconds. UInt32 0

14.8.4 Topic Type

The topic name and data type are used as meta-data to determine whether Publishers and Subscribers can exchange
messages. There is a deeper explanation of the “topic” field here: Topic information.

<topic>
<kind>NO_KEY</kind> <!-- string -->

(continues on next page)

14.8. Common 135

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<name>TopicName</name> <!-- string -->
<dataType>TopicDataTypeName</dataType> <!-- string -->
<historyQos>

<kind>KEEP_LAST</kind> <!-- string -->
<depth>20</depth> <!-- uint32 -->

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples> <!-- unint32 -->
<max_instances>2</max_instances> <!-- unint32 -->
<max_samples_per_instance>1</max_samples_per_instance> <!-- unint32 -->
<allocated_samples>20</allocated_samples> <!-- unint32 -->

</resourceLimitsQos>
</topic>

Name Description Values De-
fault

<kind> It defines the Topic’s kind NO_KEY,
WITH_KEY

NO_KEY

<name> It defines the Topic’s name. Must be unique. string_255
<dataType> It references the Topic’s data type. string_255
<historyQos>It controls the behavior of Fast RTPS when the value of an instance changes

before it is finally communicated to some of its existing DataReader entities.
Histo-
ryQos

<resourceLimitsQos>It controls the resources that Fast RTPS can use in order to meet the require-
ments imposed by the application and other QoS settings.

Resource-
LimitsQos

HistoryQoS

It controls the behavior of Fast RTPS when the value of an instance changes before it is finally communicated to some
of its existing DataReader entities.

Name Description Values Default
<kind> See description below. KEEP_LAST, KEEP_ALL KEEP_LAST
<depth> UInt32 1000

If the <kind> is set to KEEP_LAST, then Fast RTPS will only attempt to keep the latest values of the instance and
discard the older ones.
If the <kind> is set to KEEP_ALL, then Fast RTPS will attempt to maintain and deliver all the values of the instance
to existing subscribers.
The setting of <depth> must be consistent with the ResourceLimitsQos <max_samples_per_instance>. For
these two QoS to be consistent, they must verify that depth <= max_samples_per_instance.

ResourceLimitsQos

It controls the resources that Fast RTPS can use in order to meet the requirements imposed by the application and other
QoS settings.

136 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

Name Description Val-
ues

De-
fault

<max_samples> It must verify that max_samples >=
max_samples_per_instance.

UInt32 5000

<max_instances> It defines the maximum number of instances. UInt32 10
<max_samples_per_instance>It must verify that HistoryQos depth <=

max_samples_per_instance.
UInt32 400

<allocated_samples> It controls the maximum number of samples to be stored. UInt32 100

14.8.5 QOS

The quality of service (QoS) handles the restrictions applied to the application.

<qos> <!-- readerQosPoliciesType -->
<durability>

<kind>VOLATILE</kind> <!-- string -->
</durability>

<liveliness>
<kind>AUTOMATIC</kind> <!-- string -->
<lease_duration>
<sec>1</sec>

</lease_duration>
<announcement_period>
<sec>1</sec>

</announcement_period>
</liveliness>

<reliability>
<kind>BEST_EFFORT</kind>

</reliability>

<partition>
<names>

<name>part1</name> <!-- string -->
<name>part2</name> <!-- string -->

</names>
</partition>

<deadline>
<period>1</period>

</deadline>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>

<disablePositiveAcks>
<enabled>true</enabled>

</disablePositiveAcks>
</qos>

14.8. Common 137

FastRTPS Documentation, Release 1.9.3

Name Description Values Default
<durability>It is defined in Setting the data durability

kind section.
VOLATILE,
TRANSIENT_LOCAL
TRANSIENT

VOLATILE

<liveliness>Defines the liveliness of the publisher. Liveliness
<reliability>It is defined in Reliability section. RELIABLE,

BEST_EFFORT
RELIABLE

<partition>It allows the introduction of a logical par-
tition concept inside the physical partition
induced by a domain.

List <string>

<deadline> It is defined in Deadline section. Deadline period as a
DurationType

c_TimeInfinite

<lifespan> It is defined in Lifespan section. Lifespan duration as
a DurationType

c_TimeInfinite

<disablePositiveAcks>It is defined in section Disable positive acks It is disabled by default
and duration is set to
c_TimeInfinite

14.8.6 Throughput Configuration

Throughput Configuration allows to limit the output bandwidth.

Name Description Val-
ues

Default

<bytesPerPeriod>Packet size in bytes that this controller will allow in a given period. UInt32 4294967295
<periodMillisecs>Window of time in which no more than <bytesPerPeriod>

bytes are allowed.
UInt32 0

14.8.7 Allocation Configuration

Allocation Configuration allows to control the allocation behavior of internal collections for which the number of
elements depends on the number of entities in the system.

For instance, there are collections inside a publisher which depend on the number of subscribers matching with it.

See Tuning allocations for detailed information on how to tune allocation related parameters.

Name Description Values Default
<initial> Number of elements for which space is initially allocated. UInt32 0
<maximum> Maximum number of elements for which space will be allocated. UInt32 0 (means no

limit)
<increment> Number of new elements that will be allocated when more space is

necessary.
UInt32 1

14.9 Example

In this section, there is a full XML example with all possible configuration. It can be used as a quick reference, but it
may not be valid due to incompatibility or exclusive properties. Don’t take it as a working example.

138 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

<profiles>
<transport_descriptors>

<transport_descriptor>
<transport_id>ExampleTransportId1</transport_id>
<type>TCPv4</type>
<sendBufferSize>8192</sendBufferSize>
<receiveBufferSize>8192</receiveBufferSize>
<TTL>250</TTL>
<maxMessageSize>16384</maxMessageSize>
<maxInitialPeersRange>100</maxInitialPeersRange>
<interfaceWhiteList>

<address>192.168.1.41</address>
<address>127.0.0.1</address>

</interfaceWhiteList>
<wan_addr>80.80.55.44</wan_addr>
<keep_alive_frequency_ms>5000</keep_alive_frequency_ms>
<keep_alive_timeout_ms>25000</keep_alive_timeout_ms>
<max_logical_port>200</max_logical_port>
<logical_port_range>20</logical_port_range>
<logical_port_increment>2</logical_port_increment>
<listening_ports>

<port>5100</port>
<port>5200</port>

</listening_ports>
</transport_descriptor>
<transport_descriptor>

<transport_id>ExampleTransportId2</transport_id>
<type>UDPv6</type>

</transport_descriptor>
</transport_descriptors>

<types>
<type> <!-- Types can be defined in its own type of tag or sharing the same

→˓tag -->
<enum name="MyAloneEnumType">

<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>
</type>
<type>

<enum name="MyEnumType">
<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>

<typedef name="MyAlias1" type="nonBasic" nonBasicTypeName="MyEnumType"/>

<typedef name="MyAlias2" type="int32" arrayDimensions="2,2"/>

<struct name="MyStruct1">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>

<union name="MyUnion1">

(continues on next page)

14.9. Example 139

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<discriminator type="byte"/>
<case>

<caseDiscriminator value="0"/>
<caseDiscriminator value="1"/>
<member name="first" type="int32"/>

</case>
<case>

<caseDiscriminator value="2"/>
<member name="second" type="nonBasic" nonBasicTypeName="MyStruct"/

→˓>
</case>
<case>

<caseDiscriminator value="default"/>
<member name="third" type="int64"/>

</case>
</union>

<!-- All possible members struct type -->
<struct name="MyFullStruct">

<!-- Primitives & basic -->
<member name="my_bool" type="boolean"/>
<member name="my_byte" type="byte"/>
<member name="my_char" type="char8"/>
<member name="my_wchar" type="char16"/>
<member name="my_short" type="int16"/>
<member name="my_long" type="int32"/>
<member name="my_longlong" type="int64"/>
<member name="my_unsignedshort" type="uint16"/>
<member name="my_unsignedlong" type="uint32"/>
<member name="my_unsignedlonglong" type="uint64"/>
<member name="my_float" type="float32"/>
<member name="my_double" type="float64"/>
<member name="my_longdouble" type="float128"/>
<member name="my_string" type="string"/>
<member name="my_wstring" type="wstring"/>
<member name="my_boundedString" type="string" stringMaxLength="41925"/

→˓>
<member name="my_boundedWString" type="wstring" stringMaxLength="41925

→˓"/>

<!-- long long_array[2][3][4]; -->
<member name="long_array" arrayDimensions="2,3,4" type="int32"/>

<!-- map<long,map<long,long,2>,2> my_map_map; -->
<!-->
<typdefe name="my_map_inner" type="int32" key_type="int32"

→˓mapMaxLength="2"/>
<-->
<member name="my_map_map" type="nonBasic" nonBasicTypeName="my_map_

→˓inner" key_type="int32" mapMaxLength="2"/>

<!-- Complex types -->
<member name="my_other_struct" type="nonBasic" nonBasicTypeName=

→˓"OtherStruct"/>
</struct>

</type>
</types>

(continues on next page)

140 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<participant profile_name="part_profile_example">
<rtps>

<name>Participant Name</name> <!-- String -->

<defaultUnicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</defaultUnicastLocatorList>

<defaultMulticastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</defaultMulticastLocatorList>

(continues on next page)

14.9. Example 141

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<sendSocketBufferSize>8192</sendSocketBufferSize>

<listenSocketBufferSize>8192</listenSocketBufferSize>

<builtin>
<discovery_config>

<discoveryProtocol>NONE</discoveryProtocol>

<EDP>SIMPLE</EDP>

<leaseDuration>INFINITE</leaseDuration>

<leaseAnnouncement>
<sec>1</sec>
<nanosec>856000</nanosec>

</leaseAnnouncement>

<simpleEDP>
<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER>

</simpleEDP>

<staticEndpointXMLFilename>filename.xml</
→˓staticEndpointXMLFilename>

</discovery_config>

<use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol>

<domainId>4</domainId>

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</metatrafficUnicastLocatorList>
(continues on next page)

142 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<metatrafficMulticastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</metatrafficMulticastLocatorList>

<initialPeersList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</initialPeersList>

<readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</
→˓readerHistoryMemoryPolicy>

<writerHistoryMemoryPolicy>PREALLOCATED</writerHistoryMemoryPolicy>
(continues on next page)

14.9. Example 143

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</builtin>

<port>
<portBase>7400</portBase>
<domainIDGain>200</domainIDGain>
<participantIDGain>10</participantIDGain>
<offsetd0>0</offsetd0>
<offsetd1>1</offsetd1>
<offsetd2>2</offsetd2>
<offsetd3>3</offsetd3>

</port>

<participantID>99</participantID>

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>

<userTransports>
<transport_id>TransportId1</transport_id>
<transport_id>TransportId2</transport_id>

</userTransports>

<useBuiltinTransports>false</useBuiltinTransports>

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

<publisher profile_name="pub_profile_example">
<topic>

<kind>WITH_KEY</kind>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
<historyQos>

<kind>KEEP_LAST</kind>
<depth>20</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples>
<max_instances>2</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>20</allocated_samples>

(continues on next page)

144 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</resourceLimitsQos>
</topic>

<qos> <!-- writerQosPoliciesType -->
<durability>

<kind>VOLATILE</kind>
</durability>
<liveliness>

<kind>AUTOMATIC</kind>
<lease_duration>

<sec>1</sec>
<nanosec>856000</nanosec>

</lease_duration>
<announcement_period>

<sec>1</sec>
<nanosec>856000</nanosec>

</announcement_period>
</liveliness>
<reliability>

<kind>BEST_EFFORT</kind>
<max_blocking_time>

<sec>1</sec>
<nanosec>856000</nanosec>

</max_blocking_time>
</reliability>
<partition>

<names>
<name>part1</name>
<name>part2</name>

</names>
</partition>
<publishMode>

<kind>ASYNCHRONOUS</kind>
</publishMode>
<disablePositiveAcks>

<enabled>true</enabled>
<duration>
<sec>1</sec>

</duration>
</disablePositiveAcks>

</qos>

<times>
<initialHeartbeatDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</initialHeartbeatDelay>
<heartbeatPeriod>

<sec>1</sec>
<nanosec>856000</nanosec>

</heartbeatPeriod>
<nackResponseDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</nackResponseDelay>
<nackSupressionDuration>

<sec>1</sec>
(continues on next page)

14.9. Example 145

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<nanosec>856000</nanosec>
</nackSupressionDuration>

</times>

<unicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</multicastLocatorList>

<throughputController>
(continues on next page)

146 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>

<userDefinedID>45</userDefinedID>

<entityID>76</entityID>
</publisher>

<subscriber profile_name="sub_profile_example">
<topic>

<kind>WITH_KEY</kind>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
<historyQos>

<kind>KEEP_LAST</kind>
<depth>20</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples>
<max_instances>2</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>20</allocated_samples>

</resourceLimitsQos>
</topic>

<qos>
<durability>

<kind>PERSISTENT</kind>
</durability>
<liveliness>

<kind>MANUAL_BY_PARTICIPANT</kind>
<lease_duration>

<sec>1</sec>
<nanosec>856000</nanosec>

</lease_duration>
<announcement_period>

<sec>1</sec>
<nanosec>856000</nanosec>

</announcement_period>
(continues on next page)

14.9. Example 147

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

</liveliness>
<reliability>

<kind>BEST_EFFORT</kind>
<max_blocking_time>

<sec>1</sec>
<nanosec>856000</nanosec>

</max_blocking_time>
</reliability>
<partition>

<names>
<name>part1</name>
<name>part2</name>

</names>
</partition>

</qos>

<times>
<initialAcknackDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</initialAcknackDelay>
<heartbeatResponseDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</heartbeatResponseDelay>
</times>

<unicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->

(continues on next page)

148 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</multicastLocatorList>

<expectsInlineQos>true</expectsInlineQos>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>

<userDefinedID>55</userDefinedID>

<entityID>66</entityID>
</subscriber>

<!-->CONF-LIBRARY-SETTINGS<-->
<library_settings>

<intraprocess_delivery>FULL</intraprocess_delivery> <!-- OFF | USER_DATA_ONLY
→˓| FULL -->

</library_settings>

14.9. Example 149

FastRTPS Documentation, Release 1.9.3

150 Chapter 14. XML profiles

CHAPTER 15

Code generation using fastrtpsgen

eprosima Fast RTPS comes with a built-in code generation tool, fastrtpsgen, which eases the process of translating
an IDL specification of a data type to a working implementation of the methods needed to create topics, used by
publishers and subscribers, of that data type. This tool can be instructed to generate a sample application using this
data type, providing a Makefile to compile it on Linux and a Visual Studio project for Windows.

fastrtpsgen can be invoked by calling fastrtpsgen on Linux or fastrtpsgen.bat on Windows.

fastrtpsgen [-d <outputdir>] [-example <platform>] [-replace] [-typeobject] <IDLfile>
→˓[<IDLfile> ...]

The -replace argument is needed to replace the currently existing files in case the files for the IDL have been generated
previously.

When the -example argument is added, the tool will generate an automated example and the files to build it for the
platform currently invoked. The -help argument provides a list of currently supported Visual Studio versions and
platforms.

When -typeobject argument is used, the tool will generate additional files for TypeObject generation and management.
For more information about TypeObject go to Dynamic Topic Types.

15.1 Output

fastrtpsgen outputs the several files. Assuming the IDL file had the name “Mytype”, these files are:

• MyType.cxx/.h: Type definition.

• MyTypePublisher.cxx/.h: Definition of the Publisher as well as of a PublisherListener. The user must fill the
needed methods for his application.

• MyTypeSubscriber.cxx/.h: Definition of the Subscriber as well as of a SubscriberListener. The behavior of the
subscriber can be altered changing the methods implemented on these files.

• MyTypePubSubType.cxx/.h: Serialization and Deserialization code for the type. It also defines the getKey
method in case the topic uses keys.

151

FastRTPS Documentation, Release 1.9.3

• MyTypePubSubMain.cxx: The main file of the example application in case it is generated.

• Makefile or Visual Studio project files.

If -typeobject was used, MyType.cxx is modified to register the TypeObject representation in the TypeObjectFactory,
and these files will be generated too:

• MyTypeTypeObject.cxx/.h: TypeObject representation for MyType IDL.

15.2 Where to find fastrtpsgen

If you are using the binary distribution of eProsima Fast RTPS, fastrtpsgen is already provided for you. If you are
building from sources, you have to compile fastrtpsgen. You can find instructions in section Installation from Sources.

152 Chapter 15. Code generation using fastrtpsgen

CHAPTER 16

Introduction

eProsima FASTRTPSGEN is a Java application that generates source code using the data types defined in an IDL file.
This generated source code can be used in your applications in order to publish and subscribe to a topic of your defined
type.

To declare your structured data, you have to use IDL (Interface Definition Language) format. IDL is a specification
language, made by OMG (Object Management Group), which describes an interface in a language-independent way,
enabling communication between software components that do not share the same language.

eProsima FASTRTPSGEN is a tool that reads IDL files and parses a subset of the OMG IDL specification to generate
serialization source code. This subset includes the data type descriptions included in Defining a data type via IDL.
The rest of the file content is ignored.

eProsima FASTRTPSGEN generated source code uses Fast CDR: a C++11 library that provides a serialization mech-
anism. In this case, as indicated by the RTPS specification document, the serialization mechanism used is CDR.
The standard CDR (Common Data Representation) is a transfer syntax low-level representation for transfer between
agents, mapping from data types defined in OMG IDL to byte streams.

One of the main features of eProsima FASTRTPSGEN is to avoid the users the trouble of knowing anything about
serialization or deserialization procedures. It also provides an initial implementation of a publisher and a subscriber
using eProsima RTPS library.

16.1 Compile

In order to compile fastrtpsgen you first need to have gradle and java JDK installed (please, check the JDK recom-
mended version for the gradle version you have installed).

To compile fastrtpsgen java application, you will need to download its source code from the Fast-RPTS-Gen repository
and with --recursive option and compile it calling gradle assemble. For more details see Compile.

> git clone --recursive https://github.com/eProsima/Fast-RTPS-Gen.git
> cd Fast-RTPS-Gen
> gradle assemble

153

https://github.com/eProsima/Fast-CDR
https://gradle.org/install
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/eProsima/Fast-RTPS-Gen

FastRTPS Documentation, Release 1.9.3

The generated java application can be found at share/fastrtps and more user friendly scripts at scripts
folders. If you want to make these scripts available from anywhere you can add the scripts folder path to your
PATH environment variable.

154 Chapter 16. Introduction

CHAPTER 17

Execution and IDL Definition

17.1 Building publisher/subscriber code

This section guides you through the usage of this Java application and briefly describes the generated files.

Once you added scripts folder to your PATH, the Java application can be executed using the following scripts
depending on if you are on Windows or Linux:

> fastrtpsgen.bat
$ fastrtpsgen

In case you didn’t modified your PATH you can find these scripts in your <fastrtpsgen_directory>/
scripts folder.

The expected argument list of the application is:

fastrtpsgen [<options>] <IDL file> [<IDL file> ...]

Where the option choices are:

155

FastRTPS Documentation, Release 1.9.3

Option Description
-help Shows the help information.
-version Shows the current version of eProsima FASTRTPSGEN.
-d <direc-
tory>

Sets the output directory where the generated files are created.

-I <direc-
tory>

Add directory to preprocessor include paths.

-t <direc-
tory>

Sets a specific directory as a temporary directory.

-example
<platform>

Generates an example and a solution to compile the generated source code for a specific
platform. The help command shows the supported platforms.

-replace Replaces the generated source code files even if they exist.
-ppDisable Disables the preprocessor.
-ppPath Specifies the preprocessor path.
-typeobject Generates TypeObject files for the IDL provided and modifies MyType constructor to

register the TypeObject representation into the factory.

For more information about TypeObject representation read Dynamic Topic Types.

17.2 Defining a data type via IDL

The following table shows the basic IDL types supported by fastrtpsgen and how they are mapped to C++11.

IDL C++11
char char
octet uint8_t
short int16_t
unsigned short uint16_t
long int32_t
unsigned long uint32_t
long long int64_t
unsigned long long uint64_t
float float
double double
long double long double
boolean bool
string std::string

17.2.1 Arrays

fastrtpsgen supports unidimensional and multidimensional arrays. Arrays are always mapped to std::array containers.
The following table shows the array types supported and how they map.

156 Chapter 17. Execution and IDL Definition

FastRTPS Documentation, Release 1.9.3

IDL C++11
char a[5] std::array<char,5> a
octet a[5] std::array<uint8_t,5> a
short a[5] std::array<int16_t,5> a
unsigned short a[5] std::array<uint16_t,5> a
long a[5] std::array<int32_t,5> a
unsigned long a[5] std::array<uint32_t,5> a
long long a[5] std::array<int64_t,5> a
unsigned long long a[5] std::array<uint64_t,5> a
float a[5] std::array<float,5> a
double a[5] std::array<double,5> a

17.2.2 Sequences

fastrtpsgen supports sequences, which map into the STD vector container. The following table represents how the map
between IDL and C++11 is handled.

IDL C++11
sequence<char> std::vector<char>
sequence<octet> std::vector<uint8_t>
sequence<short> std::vector<int16_t>
sequence<unsigned short> std::vector<uint16_t>
sequence<long> std::vector<int32_t>
sequence<unsigned long> std::vector<uint32_t>
sequence<long long> std::vector<int64_t>
sequence<unsigned long long> std::vector<uint64_t>
sequence<float> std::vector<float>
sequence<double> std::vector<double>

17.2.3 Structures

You can define an IDL structure with a set of members with multiple types. It will be converted into a C++ class with
each member mapped as an attribute plus methods to get and set each member.

The following IDL structure:

struct Structure
{

octet octet_value;
long long_value;

string string_value;
};

Would be converted to:

class Structure
{
public:

Structure();
~Structure();
Structure(const Structure &x);

(continues on next page)

17.2. Defining a data type via IDL 157

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

Structure(Structure &&x);
Structure& operator=(const Structure &x);
Structure& operator=(Structure &&x);

void octet_value(uint8_t _octet_value);
uint8_t octet_value() const;
uint8_t& octet_value();
void long_value(int64_t _long_value);
int64_t long_value() const;
int64_t& long_value();
void string_value(const std::string

&_string_value);
void string_value(std::string &&_string_value);
const std::string& string_value() const;
std::string& string_value();

private:
uint8_t m_octet_value;
int64_t m_long_value;
std::string m_string_value;

};

17.2.4 Unions

In IDL, a union is defined as a sequence of members with their own types and a discriminant that specifies which
member is in use. An IDL union type is mapped as a C++ class with access functions to the union members and the
discriminant.

The following IDL union:

union Union switch(long)
{

case 1:
octet octet_value;

case 2:
long long_value;

case 3:
string string_value;

};

Would be converted to:

class Union
{
public:

Union();
~Union();
Union(const Union &x);
Union(Union &&x);
Union& operator=(const Union &x);
Union& operator=(Union &&x);

void d(int32t __d);
int32_t _d() const;
int32_t& _d();

(continues on next page)

158 Chapter 17. Execution and IDL Definition

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

void octet_value(uint8_t _octet_value);
uint8_t octet_value() const;
uint8_t& octet_value();
void long_value(int64_t _long_value);
int64_t long_value() const;
int64_t& long_value();
void string_value(const std::string

&_string_value);
void string_value(std:: string &&_string_value);
const std::string& string_value() const;
std::string& string_value();

private:
int32_t m__d;
uint8_t m_octet_value;
int64_t m_long_value;
std::string m_string_value;

};

17.2.5 Enumerations

An enumeration in IDL format is a collection of identifiers that have a numeric value associated. An IDL enumeration
type is mapped directly to the corresponding C++11 enumeration definition.

The following IDL enumeration:

enum Enumeration
{

RED,
GREEN,
BLUE

};

Would be converted to:

enum Enumeration : uint32_t
{

RED,
GREEN,
BLUE

};

17.2.6 Keyed Types

In order to use keyed topics, the user should define some key members inside the structure. This is achieved by writing
“@Key” before the members of the structure you want to use as keys. For example in the following IDL file the id and
type field would be the keys:

struct MyType
{

@Key long id;
@Key string type;

(continues on next page)

17.2. Defining a data type via IDL 159

FastRTPS Documentation, Release 1.9.3

(continued from previous page)

long positionX;
long positionY;

};

fastrtpsgen automatically detects these tags and correctly generates the serialization methods for the key generation
function in TopicDataType (getKey). This function will obtain the 128-bit MD5 digest of the big-endian serialization
of the Key Members.

17.2.7 Including other IDL files

You can include another IDL files in yours in order to use data types defined in them. fastrtpsgen uses a C/C++
preprocessor for this purpose, and you can use #include directive to include an IDL file.

#include "OtherFile.idl"
#include <AnotherFile.idl>

If fastrtpsgen doesn’t find a C/C++ preprocessor in default system paths, you could specify the preprocessor path using
parameter -ppPath. If you want to disable the usage of the preprocessor, you could use the parameter -ppDisable.

160 Chapter 17. Execution and IDL Definition

CHAPTER 18

Version 1.9.3

This release adds the following features:

• Participant discovery filtering flags.

• Intra-process delivery mechanism opt-in.

It also includes the following bug fixes and improvements:

• Bump to Fast-RTPS-Gen v1.0.2.

• Bring back compatibility with XTypes 1.1 on PID_TYPE_CONSISTENCY.

• Ensure correct alignment when reading a parameter list.

• Add CHECK_DOCUMENTATION cmake option.

• EntityId_t and GuidPrefix_t have now their own header files.

• Fix potential race conditions and deadlocks.

• Improve the case where check_acked_status is called between reader matching process and its acknack recep-
tion.

• RTPSMessageGroup_t instances now use the thread-local storage.

• FragmentedChangePitStop manager removed.

• Remove the data fragments vector on CacheChange_t.

• Only call find_package for TinyXML2 if third-party options are off

• Allow XMLProfileManager methods to not show error log messages if a profile is not found.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

161

FastRTPS Documentation, Release 1.9.3

18.1 Previous versions

18.1.1 Version 1.9.2

This release includes the following feature:

• Multiple initial PDP announcements.

• Flag to avoid builtin multicast.

It also adds the following bug fixes and improvements:

• Bump to Fast-RTPS-Gen v1.0.1.

• Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.2 Version 1.9.1

This release includes the following features:

• Fast-RTPS-Gen is now an independent project.

• Header eClock.h is now marked as deprecated.

It also adds the following bug fixes and improvements:

• Bump to FastCDR v1.0.11.

• Installation from sources documentation fixed.

• Fixed assertion on WriterProxy.

• Fixed potential fall through while parsing Parameters.

• Removed deprecated guards causing compilation errors in some 32 bits platforms.

• addTOCDRMessage method is now exported in the DLL, fixing issues related with Parameters’ constructors.

• Improve windows performance by avoiding usage of _Cnd_timedwait method.

• Fixed reported communication issues by sending multicast through localhost too.

• Fixed potential race conditions and deadlocks.

• Eliminating use of acceptMsgDirectTo.

• Discovery Server framework reconnect/recreate strategy.

• Removed unused folders.

• Restored subscriber API.

• SequenceNumber_t improvements.

• Added STRICT_REALTIME cmake option.

• SubscriberHistory improvements.

• Assertion of participant liveliness by receiving RTPS messages from the remote participant.

• Fixed error while setting next deadline event in create_new_change_with_params.

162 Chapter 18. Version 1.9.3

FastRTPS Documentation, Release 1.9.3

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.3 Version 1.9.0

This release includes the following features:

• Partial implementation of allocation QoS.

• Implementation of Discovery Server.

• Implementation of non-blocking calls.

It also adds the following bug fixes and improvements:

• Added sliding window to BitmapRange.

• Modified default behavior for unknown writers.

• A Flush() method was added to the logger to ensure all info is logged.

• A test for loading Duration_t from XML was added.

• Optimized WLP when removing local writers.

• Some liveliness tests were updated so that they are more stable on Windows.

• A fix was added to CMakeLists.txt for installing static libraries.

• A fix was added to performance tests so that they can run on the RT kernel.

• Fix for race condition on built-in protocols creation.

• Fix for setting nullptr in a fixed_string.

• Fix for v1.8.1 not building with -DBUILD_JAVA=ON.

• Fix for GAP messages not being sent in some cases.

• Fix for coverity report.

• Several memory issues fixes.

• fastrtps.repos file was updated.

• Documentation for building with Colcon was added.

• Change CMake configuration directory if INSTALLER_PLATFORM is set.

• IDL sub-module updated to current version.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.4 Version 1.8.3

This release adds the following bug fixes and improvements:

• Fix serialization of TypeConsistencyEnforcementQosPolicy.

• Bump to Fast-RTPS-Gen v1.0.2.

• Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen

18.1. Previous versions 163

FastRTPS Documentation, Release 1.9.3

18.1.5 Version 1.8.2

This release includes the following features:

• Modified unknown writers default behavior.

• Multiple initial PDP announcements.

• Flag to avoid builtin multicast.

• STRICT_REALTIME compilation flag.

It also adds the following bug fixes and improvements:

• Fix for setting nullptr in a fixed string.

• Fix for not sending GAP in several cases.

• Solve Coverity report issues.

• Fix issue of fastrtpsgen failing to open IDL.g4 file.

• Fix unnamed lock in AESGCMGMAC_KeyFactory.cpp.

• Improve XMLProfiles example.

• Multicast is now sent through localhost too.

• BitmapRange now implements sliding window.

• Improve SequenceNumber_t struct.

• Participant’s liveliness is now asserted when receiving any RTPS message.

• Fix leak on RemoteParticipantLeaseDuration.

• Modified default values to improve behavior in Wi-Fi scenarios.

• SubscriberHistory improvements.

• Removed use of acceptMsgDirectTo.

• WLP improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen

18.1.6 Version 1.8.1

This release includes the following features:

• Implementation of Liveliness QoS.

It also adds the following bug fixes and improvements:

• Fix for get_change on history, which was causing issues during discovery.

• Fix for announcement of participant state, which was sending ParticipantBuiltinData twice.

• Fix for closing multicast UDP channel.

• Fix for race conditions in SubscriberHistory, UDPTransportInterface and StatefulReader.

• Fix for lroundl error on Windows in Time_t.

• CDR & IDL submodules update.

• Use of java 1.8 or greater for fastrtpsgen.jar generation.

164 Chapter 18. Version 1.9.3

FastRTPS Documentation, Release 1.9.3

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.7 Version 1.8.0

This release included the following features:

• Implementation of IDL 4.2.

• Implementation of Deadline QoS.

• Implementation of Lifespan QoS.

• Implementation of Disable positive acks QoS.

• Secure sockets on TCP transport (TLS over TCP).

It also adds the following improvements and bug fixes:

• Real-time improvements: non-blocking write calls for best-effort writers, addition of fixed size strings, fixed
size bitmaps, resource limited vectors, etc.

• Duration parameters now use nanoseconds.

• Configuration of participant mutation tries (see Participant configuration).

• Automatic calculation of the port when a value of 0 is received on the endpoint custom locators.

• Non-local addresses are now filtered from whitelists.

• Optimization of check for acked status for stateful writers.

• Linked libs are now not exposed when the target is a shared lib.

• Limitation on the domain ID has been added.

• UDP non-blocking send is now optional and configurable via XML.

• Fix for non-deterministic tests.

• Fix for ReaderProxy history being reloaded incorrectly in some cases.

• Fix for RTPS domain hostid being potentially not unique.

• Fix for participants with different lease expiration times failing to reconnect.

Known issues

• When using TPC transport, sometimes callbacks are not invoked when removing a participant due to a bug in
ASIO.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.8 Version 1.7.2

This release fixes an important bug:

• Allocation limits on subscribers with a KEEP_LAST QoS was taken from resource limits configuration and
didn’t take history depth into account.

It also has the following improvements:

• Vendor FindThreads.cmake from CMake 3.14 release candidate to help with sanitizers.

18.1. Previous versions 165

FastRTPS Documentation, Release 1.9.3

• Fixed format of gradle file.

Some other minor bugs and performance improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.9 Version 1.7.1

This release included the following features:

• LogFileConsumer added to the logging system.

• Handle FASTRTPS_DEFAULT_PROFILES_FILE environment variable indicating the default profiles XML
file.

• XML parser made more restrictive and with better error messages.

It also fixes some important bugs: * Fixed discovery issues related to the selected network interfaces on Windows. *
Improved discovery times. * Workaround ASIO issue with multicast on QNX systems. * Improved TCP transport
performance. * Improved handling of key-only data submessages.

Some other minor bugs and performance improvements.

KNOWN ISSUES

• Allocation limits on subscribers with a KEEP_LAST QoS is taken from resource limits configuration and
doesn’t take history depth into account.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

18.1.10 Version 1.7.0

This release included the following features:

• TCP Transport.

• Dynamic Topic Types.

• Security 1.1 compliance.

Also bug fixing, allocation and performance improvements.

Note: If you are upgrading from an older version, it is required to regenerate generated source from IDL files using
fastrtpsgen.

18.1.11 Version 1.6.0

This release included the following features:

• Persistence.

• Security access control plugin API and builtin Access:Permissions plugin.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastrtpsgen.

166 Chapter 18. Version 1.9.3

FastRTPS Documentation, Release 1.9.3

18.1.12 Version 1.5.0

This release included the following features:

• Configuration of Fast RTPS entities through XML profiles.

• Added heartbeat piggyback support.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastrtpsgen.

18.1.13 Version 1.4.0

This release included the following:

• Added secure communications.

• Removed all Boost dependencies. Fast RTPS is not using Boost libraries anymore.

• Added compatibility with Android.

• Bug fixing.

Note: After upgrading to this release, it is advisable to regenerate generated source from IDL files using fastrtpsgen.

18.1.14 Version 1.3.1

This release included the following:

• New examples that illustrate how to tweak Fast RTPS towards different applications.

• Improved support for embedded Linux.

• Bug fixing.

18.1.15 Version 1.3.0

This release introduced several new features:

• Unbound Arrays support: Now you can send variable size data arrays.

• Extended Fragmentation Configuration: It allows you to setup a Message/Fragment max size different to the
standard 64Kb limit.

• Improved logging system: Get even more introspection about the status of your communications system.

• Static Discovery: Use XML to map your network and keep discovery traffic to a minimum.

• Stability and performance improvements: A new iteration of our built-in performance tests will make bench-
marking easier for you.

• ReadTheDocs Support: We improved our documentation format and now our installation and user manuals are
available online on ReadTheDocs.

18.1. Previous versions 167

FastRTPS Documentation, Release 1.9.3

18.1.16 Version 1.2.0

This release introduced two important new features:

• Flow Controllers: A mechanism to control how you use the available bandwidth avoiding data bursts. The
controllers allow you to specify the maximum amount of data to be sent in a specific period of time. This is very
useful when you are sending large messages requiring fragmentation.

• Discovery Listeners: Now the user can subscribe to the discovery information to know the entities present in the
network (Topics, Publishers & Subscribers) dynamically without prior knowledge of the system. This enables
the creation of generic tools to inspect your system.

But there is more:

• Full ROS2 Support: Fast RTPS is used by ROS2, the upcoming release of the Robot Operating System (ROS).

• Better documentation: More content and examples.

• Improved performance.

• Bug fixing.

168 Chapter 18. Version 1.9.3

	Requirements
	Common Dependencies
	Windows 7 32-bit and 64-bit

	Installation from Binaries
	Windows 7 32-bit and 64-bit
	Linux

	Installation from Sources
	Dependencies
	Colcon installation
	Manual installation
	Fast-RTPS-gen
	Security

	Getting Started
	A brief introduction to the RTPS protocol
	Building your first application

	Library Overview
	Fast RTPS architecture

	Objects and Data Structures
	Publisher-Subscriber Module
	RTPS Module

	Publisher-Subscriber Layer
	How to use the Publisher-Subscriber Layer
	Configuration
	Additional Concepts

	Writer-Reader Layer
	Relation to the Publisher-Subscriber Layer
	How to use the Writer-Reader Layer
	Configuring Readers and Writers
	Configuring the History

	Advanced Functionalities
	Topics and Keys
	Intra-process delivery
	Transports
	Flow Controllers
	Sending large data
	Discovery
	Subscribing to Discovery Topics
	Tuning
	Additional Quality of Service options
	Logging

	Security
	Authentication plugins
	Access control plugins
	Cryptographic plugins
	Built-in plugins
	Example: configuring the Participant

	Real-time behavior
	Tuning allocations
	Non-blocking calls

	Dynamic Topic Types
	Concepts
	Supported Types
	Complex examples
	Serialization
	Important Notes
	Dynamic Types Discovery and Endpoint Matching
	XML Dynamic Types

	Persistence
	Configuration
	Built-in plugins

	XML profiles
	Making an XML
	Library settings
	Transport descriptors
	XML Dynamic Types
	Participant profiles
	Publisher profiles
	Subscriber profiles
	Common
	Example

	Code generation using fastrtpsgen
	Output
	Where to find fastrtpsgen

	Introduction
	Compile

	Execution and IDL Definition
	Building publisher/subscriber code
	Defining a data type via IDL

	Version 1.9.3
	Previous versions

