
FastRTPS Documentation
Release 1.10.0

eProsima

Apr 03, 2020

Installation manual

1 Requirements 3
1.1 Common Dependencies . 3
1.2 Windows 7 32-bit and 64-bit . 3

2 Installation from Binaries 5
2.1 Windows 7 32-bit and 64-bit . 5
2.2 Linux . 5

3 Installation from Sources 7
3.1 Dependencies . 7
3.2 Colcon installation . 7
3.3 Manual installation . 8
3.4 Fast-RTPS-gen . 8
3.5 Security . 8

4 Getting Started 11
4.1 A brief introduction to the RTPS protocol . 11
4.2 Building your first application . 12

5 Library Overview 15
5.1 Fast RTPS architecture . 16

6 Objects and Data Structures 17
6.1 Publisher-Subscriber Module . 17
6.2 RTPS Module . 17

7 Publisher-Subscriber Layer 19
7.1 How to use the Publisher-Subscriber Layer . 19
7.2 Configuration . 21
7.3 Additional Concepts . 33

8 Writer-Reader Layer 35
8.1 Relation to the Publisher-Subscriber Layer . 35
8.2 How to use the Writer-Reader Layer . 35
8.3 Configuring Readers and Writers . 37
8.4 Configuring the History . 38

9 Advanced Functionalities 39

i

9.1 Topics and Keys . 39
9.2 Partitions . 40
9.3 Intra-process delivery . 43
9.4 Transports . 43
9.5 Flow Controllers . 57
9.6 Sending large data . 58
9.7 Discovery . 60
9.8 Subscribing to Discovery Topics . 81
9.9 Tuning . 83
9.10 Additional Quality of Service options . 84
9.11 Logging . 84

10 Security 89
10.1 Authentication plugins . 89
10.2 Access control plugins . 89
10.3 Cryptographic plugins . 90
10.4 Built-in plugins . 90
10.5 Example: configuring the Participant . 99

11 Real-time behavior 105
11.1 Tuning allocations . 105
11.2 Non-blocking calls . 109

12 Dynamic Topic Types 111
12.1 Concepts . 111
12.2 Supported Types . 112
12.3 Complex examples . 118
12.4 Serialization . 121
12.5 Important Notes . 122
12.6 Dynamic Types Discovery and Endpoint Matching . 122
12.7 XML Dynamic Types . 124
12.8 Dynamic HelloWorld Examples . 124

13 Persistence 127
13.1 Configuration . 127
13.2 Built-in plugins . 128

14 XML profiles 131
14.1 Making an XML . 131
14.2 Library settings . 132
14.3 Transport descriptors . 133
14.4 XML Dynamic Types . 136
14.5 Participant profiles . 146
14.6 Publisher profiles . 153
14.7 Subscriber profiles . 155
14.8 Common . 157
14.9 Example . 163

15 Code generation using fastrtpsgen 175
15.1 Output . 175
15.2 Where to find fastrtpsgen . 176

16 Typical Use-Cases 177
16.1 Fast-RTPS over WIFI . 177
16.2 Wide Deployments . 179

ii

16.3 Fast-RTPS in ROS 2 . 192

17 Introduction 195
17.1 Compile . 195

18 Execution and IDL Definition 197
18.1 Building publisher/subscriber code . 197
18.2 Defining a data type via IDL . 198

19 Version 1.10.0 207
19.1 Previous versions . 208

iii

iv

FastRTPS Documentation, Release 1.10.0

eprosima Fast RTPS is a C++ implementation of the RTPS (Real Time Publish-Subscribe) protocol, which provides
publisher-subscriber communications over unreliable transports such as UDP, as defined and maintained by the Object
Management Group (OMG) consortium. RTPS is also the wire interoperability protocol defined for the Data Distri-
bution Service (DDS) standard, again by the OMG. eProsima Fast RTPS holds the benefit of being standalone and
up-to-date, as most vendor solutions either implement RTPS as a tool to implement DDS or use past versions of the
specification.

Some of the main features of this library are:

• Configurable best-effort and reliable publish-subscribe communication policies for real-time applications.

• Plug and play connectivity so that any new applications are automatically discovered by any other members of
the network.

• Modularity and scalability to allow continuous growth with complex and simple devices in the network.

• Configurable network behavior and interchangeable transport layer: Choose the best protocol and system in-
put/output channel combination for each deployment.

• Two API Layers: a high-level Publisher-Subscriber one focused on usability and a lower-level Writer-Reader
one that provides finer access to the inner workings of the RTPS protocol.

eProsima Fast RTPS has been adopted by multiple organizations in many sectors including these important cases:

• Robotics: ROS (Robotic Operating System) as their default middleware for ROS2.

• EU R&D: FIWARE Incubated GE.

This documentation is organized into the following sections:

• Installation manual

• User Manual

• FastRTPSGen Manual

• Release Notes

Installation manual 1

http://www.eprosima.com/

FastRTPS Documentation, Release 1.10.0

2 Installation manual

CHAPTER 1

Requirements

eProsima Fast RTPS requires the following packages to work.

1.1 Common Dependencies

1.1.1 Gtest

Gtest is needed to compile the tests when building from sources.

1.1.2 Java & Gradle

Java & gradle is required to make use of our built-in code generation tool fastrtpsgen (see Compile).

1.2 Windows 7 32-bit and 64-bit

1.2.1 Visual C++ 2015 or 2017 Redistributable Package

eProsima Fast RTPS requires the Visual C++ Redistributable packages for the Visual Studio version you choose during
the installation or compilation. The installer gives you the option of downloading and installing them.

3

FastRTPS Documentation, Release 1.10.0

4 Chapter 1. Requirements

CHAPTER 2

Installation from Binaries

You can always download the latest binary release of eProsima Fast RTPS from the company website.

2.1 Windows 7 32-bit and 64-bit

Execute the installer and follow the instructions, choosing your preferred Visual Studio version and architecture when
prompted.

2.1.1 Environmental Variables

eProsima Fast RTPS requires the following environmental variable setup in order to function properly

• FASTRTPSHOME: Root folder where eProsima Fast RTPS is installed.

• Additions to the PATH: the /bin folder and the subfolder for your Visual Studio version of choice should be
appended to the PATH.

These variables are set automatically by checking the corresponding box during the installation process.

2.2 Linux

Extract the contents of the package. It will contain both eProsima Fast RTPS and its required package eProsima Fast
CDR. You will have to follow the same procedure for both packages, starting with Fast CDR.

Configure the compilation:

$./configure --libdir=/usr/lib

If you want to compile with debug symbols (which also enables verbose mode):

5

http://www.eprosima.com/

FastRTPS Documentation, Release 1.10.0

$./configure CXXFLAGS="-g -D__DEBUG" --libdir=/usr/lib

After configuring the project compile and install the library:

$ sudo make install

6 Chapter 2. Installation from Binaries

CHAPTER 3

Installation from Sources

3.1 Dependencies

3.1.1 Asio and TinyXML2 libraries

On Linux, you can install these libraries using the package manager of your Linux distribution. For example, on
Ubuntu you can install them by using its package manager with the next command.

sudo apt install libasio-dev libtinyxml2-dev

On Windows, you can install these libraries using Chocolatey. First, download the following chocolatey packages
from this ROS2 Github repository.

• asio.1.12.1.nupkg

• tinyxml2.6.0.0.nupkg

Once these packages are downloaded, open an administrative shell and execute the following command:

choco install -y -s <PATH\TO\DOWNLOADS\> asio tinyxml2

Please replace <PATH\TO\DOWNLOADS> with the folder you downloaded the packages to.

3.2 Colcon installation

colcon is a command line tool to build sets of software packages. This section explains to use it to compile easily
Fast-RTPS and its dependencies. First install ROS2 development tools (colcon and vcstool):

pip install -U colcon-common-extensions vcstool

Download the repos file that will be used to download Fast RTPS and its dependencies:

7

https://chocolatey.org
https://github.com/ros2/choco-packages/releases/latest
https://colcon.readthedocs.io
https://colcon.readthedocs.io

FastRTPS Documentation, Release 1.10.0

$ wget https://raw.githubusercontent.com/eProsima/Fast-RTPS/master/fastrtps.repos
$ mkdir src
$ vcs import src < fastrtps.repos

Finally, use colcon to compile all software:

$ colcon build

3.3 Manual installation

Before compiling manually Fast RTPS you need to clone the following dependencies and compile them using CMake.

• Fast CDR

$ git clone https://github.com/eProsima/Fast-CDR.git
$ mkdir Fast-CDR/build && cd Fast-CDR/build
$ cmake ..
$ cmake --build . --target install

• Foonathan memory

$ git clone https://github.com/eProsima/foonathan_memory_vendor.git
$ cd foonathan_memory_vendor
$ mkdir build && cd build
$ cmake ..
$ cmake --build . --target install

Once all dependencies are installed, you will be able to compile and install Fast RTPS.

$ git clone https://github.com/eProsima/Fast-RTPS.git
$ mkdir Fast-RTPS/build && cd Fast-RTPS/build
$ cmake ..
$ cmake --build . --target install

If you want to compile the examples, you will need to add the argument -DCOMPILE_EXAMPLES=ON when calling
CMake.

If you want to compile the performance tests, you will need to add the argument -DPERFORMANCE_TESTS=ON
when calling CMake.

For generate fastrtpsgen please see Compile.

3.4 Fast-RTPS-gen

If you want to compile fastrtpsgen java application, you will need to download its source code from the Fast-RPTS-
Gen repository and with --recursive option and compile it calling gradle assemble. For more details see
Compile.

3.5 Security

By default, Fast RTPS doesn’t compile security support. You can activate it adding -DSECURITY=ON at CMake
configuration step. More information about security on Fast RTPS, see Security.

8 Chapter 3. Installation from Sources

https://colcon.readthedocs.io
https://cmake.org
https://github.com/eProsima/Fast-CDR.git
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-RTPS-Gen
https://github.com/eProsima/Fast-RTPS-Gen

FastRTPS Documentation, Release 1.10.0

When security is activated on compilation Fast RTPS builds several built-in security plug-ins. Some of them have the
dependency of OpenSSL library.

3.5.1 OpenSSL installation on Linux

Surely you can install OpenSSL using the package manager of your Linux distribution. For example, on Ubuntu you
can install OpenSSL using its package manager with next command.

sudo apt install libssl-dev

3.5.2 OpenSSL installation on Windows

You can download OpenSSL 1.0.2 for Windows in this webpage. This is the OpenSSL version tested by our
team. Download and use the installer that fits your requirements. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory. For example:

OPENSSL_ROOT_DIR=C:\OpenSSL-Win64

3.5. Security 9

https://slproweb.com/products/Win32OpenSSL.html

FastRTPS Documentation, Release 1.10.0

10 Chapter 3. Installation from Sources

CHAPTER 4

Getting Started

4.1 A brief introduction to the RTPS protocol

At the top of RTPS, we find the Domain, which defines a separate plane of communication. Several domains can
coexist at the same time independently. A domain contains any number of Participants, elements capable of sending
and receiving data. To do this, the participants use their Endpoints:

• Reader: Endpoint able to receive data.

• Writer: Endpoint able to send data.

A Participant can have any number of writer and reader endpoints.

Communication revolves around Topics, which define the data being exchanged. Topics don’t belong to any participant
in particular; instead, all interested participants keep track of changes to the topic data and make sure to keep each
other up to date. The unit of communication is called a Change, which represents an update to a topic. Endpoints
register these changes on their History, a data structure that serves as a cache for recent changes. When you publish a
change through a writer endpoint, the following steps happen behind the scenes:

• The change is added to the writer’s history cache.

• The writer informs any readers it knows about.

• Any interested (subscribed) readers request the change.

11

FastRTPS Documentation, Release 1.10.0

• After receiving data, readers update their history cache with the new change.

By choosing Quality of Service policies, you can affect how these history caches are managed in several ways, but the
communication loop remains the same. You can read more information in Configuration.

4.2 Building your first application

To build a minimal application, you must first define the topic. To define the data type of the topic Fast-RTPS offers two
different approaches, dynamically through Dynamic Topic Types and statically through Interface Definition Language
(IDL). In this example, we will define the data type statically with IDL, you have more information about IDL in
Introduction.

Write an IDL file containing the specification you want. In this case, a single string is sufficient.

// HelloWorld.idl
struct HelloWorld
{

string msg;
};

Now we need to translate this file to something Fast RTPS understands. For this we have a code generation tool called
fastrtpsgen (see Introduction), which can do two different things:

• Generate C++ definitions for your custom topic.

• Optionally, generate a working example that uses your topic data.

You may want to check out the fastrtpsgen user manual, which comes with the distribution of the library. But for now,
the following commands will do:

On Linux:

fastrtpsgen -example CMake HelloWorld.idl

On Windows:

fastrtpsgen.bat -example CMake HelloWorld.idl

The -example option creates an example application, and the files needed to build it.

On Linux:

mkdir build && cd build
cmake ..
make

On Windows:

mkdir build && cd build
cmake -G "Visual Studio 15 2017 Win64" ..
cmake --build .

The application build can be used to spawn any number of publishers and subscribers associated with your topic.

On Linux:

./HelloWorld publisher

./HelloWorld subscriber

12 Chapter 4. Getting Started

FastRTPS Documentation, Release 1.10.0

On Windows:

HelloWorld.exe publisher
HelloWorld.exe subscriber

You may need to set up a special rule in your Firewall for eprosima Fast RTPS to work correctly on Windows.

Each time you press <Enter> on the Publisher, a new datagram is generated, sent over the network and receiver by
Subscribers currently online. If more than one subscriber is available, it can be seen that the message is equally
received on all listening nodes.

You can modify any values on your custom, IDL-generated data type before sending.

HelloWorld sample; //Auto-generated container class for topic data from FastRTPSGen
sample.msg("Hello there!"); // Add contents to the message
publisher->write(&sample); //Publish

Take a look at the examples/ folder for ideas on how to improve this basic application through different configuration
options, and for examples of advanced Fast RTPS features.

4.2. Building your first application 13

FastRTPS Documentation, Release 1.10.0

14 Chapter 4. Getting Started

CHAPTER 5

Library Overview

You can interact with Fast RTPS at two different levels:

• Publisher-Subscriber: Simplified abstraction over RTPS.

• Writer-Reader: Direct control over RTPS endpoints.

In red, the Publisher-Subscriber layer offers a convenient abstraction for most use cases. It allows you to define
Publishers and Subscribers associated with a topic, and a simple way to transmit topic data. You may remember this
from the example we generated in the “Getting Started” section, where we updated our local copy of the topic data, and

15

FastRTPS Documentation, Release 1.10.0

called a write() method on it. In blue, the Writer-Reader layer is closer to the concepts defined in the RTPS standard,
and allows a finer control, but requires you to interact directly with history caches for each endpoint.

5.1 Fast RTPS architecture

5.1.1 Threads

eProsima Fast RTPS is concurrent and event-based. Each participant spawns a set of threads to take care of background
tasks such as logging, message reception, and asynchronous communication. This should not impact the way you use
the library: the public API is thread safe, so you can fearlessly call any methods on the same participant from different
threads. However, it is still useful to know how Fast RTPS schedules work:

• Main thread: Managed by the application.

• Event thread: Each participant owns one of these, and it processes periodic and triggered events.

• Asynchronous writer thread: This thread manages asynchronous writes for all participants. Even for syn-
chronous writers, some forms of communication must be initiated in the background.

• Reception threads: Participants spawn a thread for each reception channel, where the concept of a channel
depends on the transport layer (e.g. a UDP port).

5.1.2 Events

There is an event system that enables Fast RTPS to respond to certain conditions, as well as schedule periodic activities.
Few of them are visible to the user since most are related to RTPS metadata. However, you can define your own
periodic events by inheriting from the TimedEvent class.

16 Chapter 5. Library Overview

CHAPTER 6

Objects and Data Structures

In order to make the most of eProsima Fast RTPS it is important to have a grasp of the objects and data structures
included in the library. eProsima Fast RTPS objects are classified by modules, which are briefly listed and described
in this section. For full coverage take a look at the API Reference document that comes with the distribution.

6.1 Publisher-Subscriber Module

This module composes the Publisher-Subscriber abstraction we saw in the Library Overview. The concepts here are
higher level than the RTPS standard.

• Domain Used to create, manage and destroy high-level Participants.

• Participant Contains Publishers and Subscribers, and manages their configuration.

– ParticipantAttributes Configuration parameters used in the creation of a Participant.

– ParticipantListener Allows you to implement callbacks within the scope of the Participant.

• Publisher Sends (publishes) data in the form of topic changes.

– PublisherAttributes Configuration parameters for the construction of a Publisher.

– PublisherListener Allows you to implement callbacks within the scope of the Publisher.

• Subscriber Receives data for the topics it subscribes to.

– SubscriberAttributes Configuration parameters for the construction of a Subscriber.

– SubscriberListener Allows you to implement callbacks within the scope of the Subscriber.

6.2 RTPS Module

This module directly maps to the ideas defined in the RTPS standard and allows you to interact with RTPS entities
directly. It consists of a few sub-modules:

17

FastRTPS Documentation, Release 1.10.0

6.2.1 RTPS Common

• CacheChange_t Represents a change to a topic, to be stored in a history cache.

• Data Payload associated with a cache change. It may be empty depending on the message and change type.

• Message Defines the organization of an RTPS Message.

• Header Standard header that identifies a message as belonging to the RTPS protocol, and includes the vendor
id.

• Sub-Message Header Identifier for an RTPS sub-message. An RTPS Message can be composed of several
sub-messages.

• MessageReceiver Deserializes and processes received RTPS messages.

• RTPSMessageCreator Composes RTPS messages.

6.2.2 RTPS Domain

• RTPSDomain Use it to create, manage and destroy low-level RTPSParticipants.

• RTPSParticipant Contains RTPS Writers and Readers, and manages their configuration.

– RTPSParticipantAttributes Configuration parameters used in the creation of an RTPS Partici-
pant.

– PDPSimpleAllows the participant to become aware of the other participants within the Network, through
the Participant Discovery Protocol.

– EDPSimpleAllows the Participant to become aware of the endpoints (RTPS Writers and Readers) present
in the other Participants within the network, through the Endpoint Discovery Protocol.

– EDPStatic Reads information about remote endpoints from a user file.

– TimedEvent Base class for periodic or timed events.

6.2.3 RTPS Reader

• RTPSReader Base class for the reader endpoint.

– ReaderAttributes Configuration parameters used in the creation of an RTPS Reader.

– ReaderHistory History data structure. Stores recent topic changes.

– ReaderListener Use it to define callbacks in scope of the Reader.

6.2.4 RTPS Writer

• RTPSWriter Base class for the writer endpoint.

– WriterAttributes Configuration parameters used in the creation of an RTPS Writer.

– WriterHistory History data structure. Stores outgoing topic changes and schedules them to be sent.

18 Chapter 6. Objects and Data Structures

CHAPTER 7

Publisher-Subscriber Layer

eProsima Fast RTPS provides a high-level Publisher-Subscriber Layer, which is a simple to use abstraction over the
RTPS protocol. By using this layer, you can code a straight-to-the-point application while letting the library take care
of the lower level configuration.

7.1 How to use the Publisher-Subscriber Layer

We are going to use the example built in the previous section to explain how this layer works.

The first step is to create a Participant instance, which will act as a container for the Publishers and Subscribers
our application needs. For this we use Domain, a static class that manages RTPS entities. We also need to pass a
configuration structure for the Participant, which can be left in its default configuration for now:

ParticipantAttributes participant_attr; //Configuration structure
Participant *participant = Domain::createParticipant(participant_attr);

The default configuration provides a basic working set of options with predefined ports for communications. During
this tutorial, you will learn to tune eProsima Fast RTPS.

In order to use our topic, we have to register it within the Participant using the code generated with fastrtpsgen
(see Introduction. Once again, this is done by using the Domain class:

HelloWorldPubSubType m_type; //Auto-generated type from FastRTPSGen
Domain::registerType(participant, &m_type);

Once set up, we instantiate a Publisher within our Participant:

PublisherAttributes publisher_attr; //Configuration structure
PubListener publisher_listener; //Class that implements callbacks from the publisher
Publisher *publisher = Domain::createPublisher(participant, publisher_attr, &
→˓publisher_listener);

Once the Publisher is functional, posting data is a simple process:

19

FastRTPS Documentation, Release 1.10.0

HelloWorld sample; //Auto-generated container class for topic data from FastRTPSGen
sample.msg("Hello there!"); // Add contents to the message
publisher->write(&sample); //Publish

The Publisher has a set of optional callback functions that are triggered when events happen. An example is when
a Subscriber starts listening to our topic.

To implement these callbacks we create the class PubListener, which inherits from the base class
PublisherListener. We pass an instance to this class during the creation of the Publisher.

class PubListener : public PublisherListener
{

public:

PubListener() {}
~PubListener() {}

void onPublicationmatched(Publisher* pub, MatchingInfo& info)
{

//Callback implementation. This is called each time the Publisher finds a
→˓Subscriber on the network that listens to the same topic.

}
};

The Subscriber creation and implementation are symmetric.

SubscriberAttributes subscriber_attr; //Configuration structure
SubListener subscriber_listener; //Class that implements callbacks from the Subscriber
Subscriber *subscriber = Domain::createSubscriber(participant, subscriber_attr, &
→˓subscriber_listener);

Incoming messages are processed within the callback that is called when a new message is received:

class SubListener: public SubscriberListener
{

public:

SubListener() {}

~SubListener() {}

void onNewDataMessage(Subscriber * sub)
{

if(sub->takeNextData((void*)&sample, &sample_info))
{

if(sample_info.sampleKind == ALIVE)
{

std::cout << "New message: " << sample.msg() << std::endl;
}

}
}

HelloWorld sample; //Storage for incoming messages

SampleInfo_t sample_info; //Auxiliary structure with meta-data on the message
};

20 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

7.2 Configuration

eProsima Fast RTPS entities can be configured through the code or XML profiles. This section will show both
alternatives.

7.2.1 Participant configuration

The Participant can be configured via the ParticipantAttributes structure. createParticipant
function accepts an instance of this structure.

ParticipantAttributes participant_attr;

participant_attr.rtps.setName("my_participant");
participant_attr.rtps.builtin.domainId = 80;

Participant *participant = Domain::createParticipant(participant_attr);

Also, it can be configured through an XML profile. createParticipant function accepts a name of an XML
profile.

Participant *participant = Domain::createParticipant("participant_xml_profile");

About XML profiles you can learn more in XML profiles. This is an example of a participant XML profile.

<participant profile_name="participant_xml_conf_profile">
<rtps>

<name>my_participant</name>
<builtin>

<domainId>80</domainId>
</builtin>

</rtps>
</participant>

We will now go over the most common configuration options.

• Participant name: the name of the Participant forms part of the meta-data of the RTPS protocol.

C++

participant_attr.rtps.setName("my_participant");

XML

<participant profile_name="participant_xml_conf_name_profile">
<rtps>

<name>my_participant</name>
</rtps>

</participant>

• DomainId: Publishers and Subscribers can only talk to each other if their Participants belong to the same
DomainId.

7.2. Configuration 21

FastRTPS Documentation, Release 1.10.0

C++

participant_attr.rtps.builtin.domainId = 80;

XML

<participant profile_name="participant_xml_conf_domain_profile">
<rtps>

<builtin>
<domainId>80</domainId>

</builtin>
</rtps>

</participant>

• Mutation Tries: The reader’s physical port could be already bound. In that case, the Participant uses its
mutation_tries attribute to determine how many different ports must try before failing. These mutated ports will
modify the locator’s information. By default, its value is 100.

C++

participant_attr.rtps.builtin.mutation_tries = 55;

XML

<participant profile_name="participant_xml_conf_mutation_tries_profile">
<rtps>

<builtin>
<mutation_tries>55</mutation_tries>

</builtin>
</rtps>

</participant>

7.2.2 Publisher and Subscriber configuration

The Publisher can be configured via the PublisherAttributes structure and createPublisher function
accepts an instance of this structure. The Subscriber can be configured via the SubscriberAttributes
structure and createSubscriber function accepts an instance of this structure.

PublisherAttributes publisher_attr;
Publisher *publisher = Domain::createPublisher(participant, publisher_attr);

SubscriberAttributes subscriber_attr;
Subscriber *subscriber = Domain::createSubscriber(participant, subscriber_attr);

Also, these entities can be configured through an XML profile. createPublisher and createSubscriber
functions accept the name of an XML profile.

Publisher *publisher = Domain::createPublisher(participant, "publisher_xml_profile");
Subscriber *subscriber = Domain::createSubscriber(participant, "subscriber_xml_profile
→˓");

We will now go over the most common configuration options.

22 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

Topic information

The topic name and data type are used as meta-data to determine whether Publishers and Subscribers can exchange
messages.

C++

publisher_attr.topic.topicDataType = "HelloWorldType";
publisher_attr.topic.topicName = "HelloWorldTopic";

subscriber_attr.topic.topicDataType = "HelloWorldType";
subscriber_attr.topic.topicName = "HelloWorldTopic";

XML

<publisher profile_name="publisher_xml_conf_topic_profile">
<topic>

<dataType>HelloWorldType</dataType>
<name>HelloWorldTopic</name>

</topic>
</publisher>

<subscriber profile_name="subscriber_xml_conf_topic_profile">
<topic>

<dataType>HelloWorldType</dataType>
<name>HelloWorldTopic</name>

</topic>
</subscriber>

Reliability

The RTPS standard defines two behavior modes for message delivery:

• Best-Effort (default): Messages are sent without arrival confirmation from the receiver (subscriber). It is fast,
but messages can be lost.

• Reliable: The sender agent (publisher) expects arrival confirmation from the receiver (subscriber). It is slower
but prevents data loss.

7.2. Configuration 23

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.qos.m_reliability.kind = RELIABLE_RELIABILITY_QOS;

subscriber_attr.qos.m_reliability.kind = BEST_EFFORT_RELIABILITY_QOS;

XML

<publisher profile_name="publisher_xml_conf_reliability_profile">
<qos>

<reliability>
<kind>RELIABLE</kind>

</reliability>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_reliability_profile">
<qos>

<reliability>
<kind>BEST_EFFORT</kind>

</reliability>
</qos>

</subscriber>

Some reliability combinations make a publisher and a subscriber incompatible and unable to talk to each other. Next
table shows the incompatibilities.

Publisher \ Subscriber Best Effort Reliable
Best Effort X
Reliable X X

History

There are two policies for sample storage:

• Keep-All: Store all samples in memory.

• Keep-Last (Default): Store samples up to a maximum depth. When this limit is reached, they start to become
overwritten.

24 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.topic.historyQos.kind = KEEP_ALL_HISTORY_QOS;

subscriber_attr.topic.historyQos.kind = KEEP_LAST_HISTORY_QOS;
subscriber_attr.topic.historyQos.depth = 5;

XML

<publisher profile_name="publisher_xml_conf_history_profile">
<topic>

<historyQos>
<kind>KEEP_ALL</kind>

</historyQos>
</topic>

</publisher>

<subscriber profile_name="subscriber_xml_conf_history_profile">
<topic>

<historyQos>
<kind>KEEP_LAST</kind>
<depth>5</depth>

</historyQos>
</topic>

</subscriber>

Durability

Durability configuration of the endpoint defines how it behaves regarding samples that existed on the topic before a
subscriber joins

• Volatile: Past samples are ignored, a joining subscriber receives samples generated after the moment it matches.

• Transient Local (Default): When a new subscriber joins, its History is filled with past samples.

• Transient: When a new subscriber joins, its History is filled with past samples, which are stored on persistent
storage (see Persistence).

7.2. Configuration 25

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.qos.m_durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;

subscriber_attr.qos.m_durability.kind = VOLATILE_DURABILITY_QOS;

XML

<publisher profile_name="publisher_xml_conf_durability_profile">
<qos>

<durability>
<kind>TRANSIENT_LOCAL</kind>

</durability>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_durability_profile">
<qos>

<durability>
<kind>VOLATILE</kind>

</durability>
</qos>

</subscriber>

Deadline

The deadline QoS raises an alarm when the frequency of new samples falls below a certain threshold. It is useful for
cases where data is expected to be updated periodically.

On the publishing side, the deadline QoS defines the maximum period in which the application is expected to supply
a new sample. On the subscribing side, it defines the maximum period in which new samples should be received. For
publishers and subscribers to match, the offered deadline period must be less than or equal to the requested deadline
period, otherwise the entities are considered to be incompatible.

For topics with keys, this QoS is applied by key. Imagine for example we are publishing vehicle positions, and we
want to enforce a position of each vehicle is published periodically, in that case, we can set the ID of the vehicle as the
key of the topic, and use the deadline QoS.

26 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.qos.m_deadline.period = 1;

subscriber_attr.qos.m_deadline.period = 1;

XML

<publisher profile_name="publisher_xml_conf_deadline_profile">
<qos>

<deadline>
<period>

<sec>1</sec>
</period>

</deadline>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_deadline_profile">
<qos>

<deadline>
<period>

<sec>1</sec>
</period>

</deadline>
</qos>

</subscriber>

Lifespan

Specifies the maximum duration of validity of the data written by the publisher. When the lifespan period expires, data
is removed from the history.

7.2. Configuration 27

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.qos.m_lifespan.duration = 1;

subscriber_attr.qos.m_lifespan.duration = 1;

XML

<publisher profile_name="publisher_xml_conf_lifespan_profile">
<qos>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_lifespan_profile">
<qos>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>
</qos>

</subscriber>

Liveliness

Liveliness is a quality of service that can be used to ensure that particular entities on the network are “alive”. There are
different settings that allow distinguishing between applications where data is updated periodically and applications
where data is changed sporadically. It also allows customizing the application regarding the kind of failures that should
be detected by the liveliness mechanism.

The AUTOMATIC liveliness kind is suitable for applications that only need to detect whether a remote application
is still running. Therefore, as long as the local process where the participant is running and the link connecting it to
remote participants exists, the entities within the remote participant will be considered alive.

The two manual settings require that liveliness is asserted periodically on the publishing side to consider that remote
entities are alive. Liveliness can be asserted explicitly by calling the assert_liveliness operations on the publisher, or
implicitly by writing data. The MANUAL_BY_PARTICIPANT setting only requires that one entity in the publishing
side asserts liveliness to deduce that all other entities within that participant are also alive. The MANUAL_BY_TOPIC
mode is more restrictive and requires that at least one instance within the publisher is asserted to consider that the
publisher is alive.

Besides the liveliness kind, two additional parameters allow defining the application behavior. They are all listed in
the table below.

28 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

Name Description Values De-
fault

<kind> Specifies how to manage liveliness. AUTOMATIC,
MANUAL_BY_PARTICIPANT,
MANUAL_BY_TOPIC

AUTOMATIC

<lease_duration>Amount of time to wait since the last message from a writer
to consider that it is no longer alive.

DurationType c_TimeInfinite

<announcement_period>Amount of time between consecutive liveliness messages
sent by the publisher. Only used for AUTOMATIC and
MANUAL_BY_PARTICIPANT liveliness kinds.

DurationType c_TimeInfinite

C++

publisher_attr.qos.m_liveliness.announcement_period = 0.5;
publisher_attr.qos.m_liveliness.lease_duration = 1;
publisher_attr.qos.m_liveliness.kind = AUTOMATIC_LIVELINESS_QOS;

subscriber_attr.qos.m_liveliness.lease_duration = 1;
subscriber_attr.qos.m_liveliness.kind = AUTOMATIC_LIVELINESS_QOS;

XML

<publisher profile_name="publisher_xml_conf_liveliness_profile">
<qos>

<liveliness>
<announcement_period>
<sec>0</sec>
<nanosec>1000000</nanosec>

</announcement_period>
<lease_duration>
<sec>1</sec>

</lease_duration>
<kind>AUTOMATIC</kind>

</liveliness>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_liveliness_profile">
<qos>

<liveliness>
<lease_duration>

<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>

</liveliness>
</qos>

</subscriber>

Resource limits

Allow controlling the maximum size of the History and other resources.

7.2. Configuration 29

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.topic.resourceLimitsQos.max_samples = 200;

subscriber_attr.topic.resourceLimitsQos.max_samples = 200;

XML

<publisher profile_name="publisher_xml_conf_resource_limits_profile">
<topic>

<resourceLimitsQos>
<max_samples>200</max_samples>

</resourceLimitsQos>
</topic>

</publisher>

<subscriber profile_name="subscriber_xml_conf_resource_limits_profile">
<topic>

<resourceLimitsQos>
<max_samples>200</max_samples>

</resourceLimitsQos>
</topic>

</subscriber>

Disable positive acks

This is an additional QoS that allows reducing network traffic when strict reliable communication is not required and
bandwidth is limited. It consists in changing the default behavior by which positive acks are sent from readers to
writers. Instead, only negative acks will be sent when a reader is missing a sample, but writers will keep data for a
sufficient keep duration before considering it as acknowledged. A writer and a reader are incompatible (i.e. they will
not match) if the latter is using this QoS but the former is not.

30 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

C++

publisher_attr.qos.m_disablePositiveACKs.enabled = true;
publisher_attr.qos.m_disablePositiveACKs.duration = 1;

subscriber_attr.qos.m_disablePositiveACKs.enabled = true;

XML

<publisher profile_name="publisher_xml_conf_disable_positive_acks_profile">
<qos>

<disablePositiveAcks>
<enabled>true</enabled>
<duration>

<sec>1</sec>
</duration>

</disablePositiveAcks>
</qos>

</publisher>

<subscriber profile_name="subscriber_xml_conf_disable_positive_acks_profile">
<qos>

<disablePositiveAcks>
<enabled>true</enabled>

</disablePositiveAcks>
</qos>

</subscriber>

Unicast locators

They are network endpoints where the entity will receive data. For more information about the network, see Trans-
ports. Publishers and subscribers inherit unicast locators from the participant. You can set a different set of locators
through this attribute.

7.2. Configuration 31

FastRTPS Documentation, Release 1.10.0

C++

Locator_t new_locator;
new_locator.port = 7800;

subscriber_attr.unicastLocatorList.push_back(new_locator);

publisher_attr.unicastLocatorList.push_back(new_locator);

XML

<publisher profile_name="publisher_xml_conf_unicast_locators_profile">
<unicastLocatorList>

<locator>
<udpv4>

<port>7800</port>
</udpv4>

</locator>
</unicastLocatorList>

</publisher>

<subscriber profile_name="subscriber_xml_conf_unicast_locators_profile">
<unicastLocatorList>

<locator>
<udpv4>

<port>7800</port>
</udpv4>

</locator>
</unicastLocatorList>

</subscriber>

Multicast locators

They are network endpoints where the entity will receive data. For more information about network configuration, see
Transports. By default publishers and subscribers don’t use any multicast locator. This attribute is useful when you
have a lot of entities and you want to reduce the network usage.

32 Chapter 7. Publisher-Subscriber Layer

FastRTPS Documentation, Release 1.10.0

C++

Locator_t new_locator;

IPLocator::setIPv4(new_locator, "239.255.0.4");
new_locator.port = 7900;

subscriber_attr.multicastLocatorList.push_back(new_locator);

publisher_attr.multicastLocatorList.push_back(new_locator);

XML

<publisher profile_name="publisher_xml_conf_multicast_locators_profile">
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
<port>7900</port>

</udpv4>
</locator>

</multicastLocatorList>
</publisher>

<subscriber profile_name="subscriber_xml_conf_multicast_locators_profile">
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
<port>7900</port>

</udpv4>
</locator>

</multicastLocatorList>
</subscriber>

7.3 Additional Concepts

7.3.1 Using message meta-data

When a message is taken from the Subscriber, an auxiliary SampleInfo_t structure instance is also returned.

7.3. Additional Concepts 33

FastRTPS Documentation, Release 1.10.0

Static types

HelloWorld sample;
SampleInfo_t sample_info;
subscriber->takeNextData((void*)&sample, &sample_info);

Dynamic types

// input_type is an instance of DynamicPubSubType of out current dynamic type
DynamicPubSubType *pst = dynamic_cast<DynamicPubSubType*>(input_type);
DynamicData *sample = DynamicDataFactory::get_instance()->create_data(pst->
→˓GetDynamicType());
subscriber->takeNextData(sample, &sample_info);

This SampleInfo_t structure contains meta-data on the incoming message:

• sampleKind: type of the sample, as defined by the RTPS Standard. Healthy messages from a topic are always
ALIVE.

• WriterGUID: Signature of the sender (Publisher) the message comes from.

• OwnershipStrength: When several senders are writing the same data, this field can be used to determine which
data is more reliable.

• SourceTimestamp: A timestamp on the sender side that indicates the moment the sample was encapsulated and
sent.

This meta-data can be used to implement filters:

if((sample_info.sampleKind == ALIVE) & (sample_info.ownershipStrength > 25))
{

//Process data
}

7.3.2 Defining callbacks

As we saw in the example, both the Publisher and Subscriber have a set of callbacks you can use in your
application. These callbacks are to be implemented within classes that derive from SubscriberListener or
PublisherListener. The following table gathers information about the possible callbacks that can be imple-
mented in both cases:

Callback Publisher Subscriber
onNewDataMessage N Y
onSubscriptionMatched N Y
onPublicationMatched Y N
on_offered_deadline_missed Y N
on_requested_deadline_missed N Y
on_liveliness_lost Y N
on_liveliness_changed N Y

34 Chapter 7. Publisher-Subscriber Layer

CHAPTER 8

Writer-Reader Layer

The lower level Writer-Reader Layer of eprosima Fast RTPS provides a raw implementation of the RTPS protocol. It
provides more control over the internals of the protocol than the Publisher-Subscriber layer. Advanced users can make
use of this layer directly to gain more control over the functionality of the library.

8.1 Relation to the Publisher-Subscriber Layer

Elements of this layer map one-to-one with elements from the Publisher-Subscriber Layer, with a few additions. The
following table shows the name correspondence between layers:

Publisher-Subscriber Layer Writer-Reader Layer
Domain RTPSDomain
Participant RTPSParticipant
Publisher RTPSWriter
Subscriber RTPSReader

8.2 How to use the Writer-Reader Layer

We will now go over the use of the Writer-Reader Layer like we did with the Publish-Subscriber one, explaining the
new features it presents.

We recommend you to look at the two examples of how to use this layer the distribution comes with while reading this
section. They are located in examples/RTPSTest_as_socket and in examples/RTPSTest_registered

8.2.1 Managing the Participant

To create a RTPSParticipant, the process is very similar to the one shown in the Publisher-Subscriber layer.

35

FastRTPS Documentation, Release 1.10.0

RTPSParticipantAttributes participant_attr;
participant_attr.setName("participant");
RTPSParticipant* participant = RTPSDomain::createParticipant(participant_attr);

The RTPSParticipantAttributes structure is equivalent to the rtps member of
ParticipantAttributes field in the Publisher-Subscriber Layer, so you can configure your
RTPSParticipant the same way as before:

RTPSParticipantAttributes participant_attr;
participant_attr.setName("my_participant");
//etc.

8.2.2 Managing the Writers and Readers

As the RTPS standard specifies, Writers and Readers are always associated with a History element. In the Publisher-
Subscriber Layer, its creation and management is hidden, but in the Writer-Reader Layer, you have full control over
its creation and configuration.

Writers are configured with a WriterAttributes structure. They also need a WriterHistory which is con-
figured with a HistoryAttributes structure.

HistoryAttributes history_attr;
WriterHistory* history = new WriterHistory(history_attr);
WriterAttributes writer_attr;
RTPSWriter* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, history);

The creation of a Reader is similar. Note that in this case, you can provide a ReaderListener instance that
implements your callbacks:

class MyReaderListener : public ReaderListener{};
MyReaderListener listener;
HistoryAttributes history_attr;
ReaderHistory* history = new ReaderHistory(history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, history, &
→˓listener);

8.2.3 Using the History to Send and Receive Data

In the RTPS Protocol, Readers and Writers save the data about a topic in their associated History. Each piece of
data is represented by a Change, which eprosima Fast RTPS implements as CacheChange_t. Changes are always
managed by the History. As a user, the procedure for interacting with the History is always the same:

1. Request a CacheChange_t from the History

2. Use it

3. Release it

You can interact with the History of the Writer to send data. A callback that returns the maximum number of payload
bytes is required:

//Request a change from the history
CacheChange_t* change = writer->new_change([]() -> uint32_t { return 255;}, ALIVE);
//Write serialized data into the change

(continues on next page)

36 Chapter 8. Writer-Reader Layer

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

change->serializedPayload.length = sprintf((char*) change->serializedPayload.data,
→˓"My example string %d", 2)+1;
//Insert change back into the history. The Writer takes care of the rest.
history->add_change(change);

If your topic data type has several fields, you will have to provide functions to serialize and deserialize your data in
and out of the CacheChange_t. FastRTPSGen does this for you.

You can receive data from within a ReaderListener callback method as we did in the Publisher-Subscriber Layer:

class MyReaderListener: public ReaderListener
{

public:

MyReaderListener(){}

~MyReaderListener(){}

void onNewCacheChangeAdded(RTPSReader* reader,const CacheChange_t* const
→˓change)

{
// The incoming message is enclosed within the `change` in the function

→˓parameters
printf("%s\n",change->serializedPayload.data);
// Once done, remove the change
reader->getHistory()->remove_change((CacheChange_t*)change);

}
};

8.3 Configuring Readers and Writers

One of the benefits of using the Writer-Reader layer is that it provides new configuration possibilities while maintaining
the options from the Publisher-Subscriber layer (see Configuration). For example, you can set a Writer or a Reader as
a Reliable or Best-Effort endpoint as previously:

writer_attr.endpoint.reliabilityKind = BEST_EFFORT;

8.3.1 Setting the data durability kind

The Durability parameter defines the behavior of the Writer regarding samples already sent when a new Reader
matches. eProsima Fast RTPS offers three Durability options:

• VOLATILE (default): Messages are discarded as they are sent. If a new Reader matches after message n, it will
start received from message n+1.

• TRANSIENT_LOCAL: The Writer saves a record of the last k messages it has sent. If a new reader matches
after message n, it will start receiving from message n-k

• TRANSIENT: As TRANSIENT_LOCAL, but the record of messages will be saved to persistent storage, so it
will be available if the writer is destroyed and recreated, or in case of an application crash (see Persistence)

To choose your preferred option:

8.3. Configuring Readers and Writers 37

FastRTPS Documentation, Release 1.10.0

writer_attr.endpoint.durabilityKind = TRANSIENT_LOCAL;

Because in the Writer-Reader layer you have control over the History, in TRANSIENT_LOCAL and TRANSIENT
modes the Writer sends all changes you have not explicitly released from the History.

8.4 Configuring the History

The History has its own configuration structure, the HistoryAttributes.

8.4.1 Changing the maximum size of the payload

You can choose the maximum size of the Payload that can go into a CacheChange_t. Be sure to choose a size that
allows it to hold the biggest possible piece of data:

history_attr.payloadMaxSize = 250; //Defaults to 500 bytes

8.4.2 Changing the size of the History

You can specify a maximum amount of changes for the History to hold and an initial amount of allocated changes:

history_attr.initialReservedCaches = 250; //Defaults to 500
history_attr.maximumReservedCaches = 500; //Defaults to 0 = Unlimited Changes

When the initial amount of reserved changes is lower than the maximum, the History will allocate more changes as
they are needed until it reaches the maximum size.

38 Chapter 8. Writer-Reader Layer

CHAPTER 9

Advanced Functionalities

This section covers slightly more advanced, but useful features that enrich your implementation.

9.1 Topics and Keys

The RTPS standard contemplates the use of keys to define multiple data sources/sinks within a single topic.

There are three ways of implementing keys into your topic:

• Defining a @Key field in the IDL file when using FastRTPSGen (see the examples that come with the distribu-
tion).

• Manually implementing and using a getKey() method.

• Adding the attribute Key to the member and its parents when using dynamic types (see Dynamic Topic Types).

Publishers and Subscribers using topics with keys must be configured to use them, otherwise, they will have no effect:

C++

// Publisher-Subscriber Layer configuration.
publisher_attr.topic.topicKind = WITH_KEY;

XML

<publisher profile_name="publisher_profile_qos_key">
<topic>

<kind>WITH_KEY</kind>
</topic>

</publisher>

The RTPS Layer requires you to call the getKey() method manually within your callbacks.

39

FastRTPS Documentation, Release 1.10.0

You can tweak the History to accommodate data from multiple keys based on your current configuration. This consist
of defining a maximum number of data sinks and a maximum size for each sink:

C++

// Set the subscriber to remember and store up to 3 different keys.
subscriber_attr.topic.resourceLimitsQos.max_instances = 3;
// Hold a maximum of 20 samples per key.
subscriber_attr.topic.resourceLimitsQos.max_samples_per_instance = 20;

XML

<subscriber profile_name="subscriber_profile_qos_resourcelimit">
<topic>

<resourceLimitsQos>
<max_instances>3</max_instances>
<max_samples_per_instance>20</max_samples_per_instance>

</resourceLimitsQos>
</topic>

</subscriber>

Note that your History must be big enough to accommodate the maximum number of samples for each key. eProsima
Fast RTPS will notify you if your History is too small.

9.2 Partitions

Partitions introduce a logical entity isolation level concept inside the physical isolation induced by a Domain. They
represent another level to separate Publishers and Subscribers beyond Domain and Topic. For a Publisher to commu-
nicate with a Subscriber, they have to belong at least to a common partition. In this sense, partitions represent a light
mechanism to provide data separation among Endpoints:

• Unlike Domain and Topic, Partitions can be changed dynamically during the life cycle of the Endpoint with
little cost. Specifically, no new threads are launched, no new memory is allocated, and the change history is
not affected. Beware that modifying the Partition membership of endpoints will trigger the announcement of
the new QoS configuration, and as a result, new Endpoint matching may occur, depending on the new Partition
configuration. Changes on the memory allocation and running threads may occur due to the matching of remote
Endpoints.

• Unlike Domain and Topic, an Endpoint can belong to several Partitions at the same time. For certain data to be
shared over different Topics, there must be a different Publisher for each Topic, each of them sharing its own
history of changes. On the other hand, a single Publisher can share the same data over different Partitions using
a single topic change, thus reducing network overload.

The Partition membership of an Endpoint can be configured on the qos.m_partitions attribute of the
PublisherAttributes or SubscriberAttributes objects. This attribute holds a list of Partition name
strings. If no Partition is defined for an Entity, it will be automatically included in the default nameless Partition.
Therefore, a Publisher and a Subscriber that specify no Partition will still be able to communicate through the default
Partition.

Note: Partitions are linked to the Endpoint and not to the changes. This means that the Endpoint history is oblivious
to modifications in the Partitions. For example, if a Publisher switches Partitions and afterwards needs to resend some
older change again, it will deliver it to the new Partition set, regardless of which Partitions were defined when the

40 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

change was created. This means that a late joiner Subscriber may receive changes that were created when another set
of Partitions was active.

9.2.1 Wildcards in Partitions

Partition name entries can have wildcards following the naming conventions defined by the POSIX fnmatch API
(1003.2-1992 section B.6). Entries with wildcards can match several names, allowing an Endpoint to easily be included
in several Partitions. Two Partition names with wildcards will match if either of them matches the other one according
to fnmatch. That is, the matching is checked both ways. For example, consider the following configuration:

• A publisher with Partition part*

• A subscriber with Partition partition*

Even though partition* does not match part*, these publisher and subscriber will communicate between them
because part* matches partition*.

Note that a Partition with name * will match any other partition except the default Partition.

9.2.2 Full example

Given a system with the following Partition configuration:

Participant_1 Pub_11 {“Partition_1”, “Partition_2”}
Pub_12 {“*”}

Participant_2 Pub_21 {}
Pub_22 {“Partition*”}

Participant_3 Subs_31 {“Partition_1”}
Subs_32 {“Partition_2”}
Subs_33 {“Partition_3”}
Subs_34 {}

The endpoints will finally match the Partitions depicted on the following table. Note that Pub_12 does not match the
default Partition.

Participant_1 Participant_2 Participant_3
Pub_11 Pub_12 Pub_21 Pub_22 Subs_31 Subs_32 Subs_33 Subs_34

Partition_1 X X X X
Partition_2 X X X X
Partition_3 X X X
{default} X X

The following table provides the communication matrix for the given example:

Participant_1 Participant_2
Pub_11 Pub_12 Pub_21 Pub_22

Participant_3 Subs_31 X X X
Subs_32 X X X
Subs_33 X X
Subs_34 X

The following piece of code shows the set of parameters needed for the use case depicted in this example.

9.2. Partitions 41

FastRTPS Documentation, Release 1.10.0

C++

PublisherAttributes pub_11_attr;
pub_11_attr.qos.m_partition.push_back("Partition_1");
pub_11_attr.qos.m_partition.push_back("Partition_2");

PublisherAttributes pub_12_attr;
pub_12_attr.qos.m_partition.push_back("*");

PublisherAttributes pub_21_attr;
//No partitions defined for pub_21

PublisherAttributes pub_22_attr;
pub_22_attr.qos.m_partition.push_back("Partition*");

SubscriberAttributes subs_31_attr;
subs_31_attr.qos.m_partition.push_back("Partition_1");

SubscriberAttributes subs_32_attr;
subs_32_attr.qos.m_partition.push_back("Partition_2");

SubscriberAttributes subs_33_attr;
subs_33_attr.qos.m_partition.push_back("Partition_3");

SubscriberAttributes subs_34_attr;
//No partitions defined for subs_34

XML

<publisher profile_name="pub_11">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_1</name>
<name>Partition_2</name>

</names>
</partition>

</qos>
</publisher>

<publisher profile_name="pub_12">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>*</name>
</names>

</partition>
</qos>

</publisher>

<publisher profile_name="pub_21">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
</publisher>

<publisher profile_name="pub_22">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition*</name>
</names>

</partition>
</qos>

</publisher>

<subscriber profile_name="subs_31">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_1</name>
</names>

</partition>
</qos>

</subscriber>

<subscriber profile_name="subs_32">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_2</name>
</names>

</partition>
</qos>

</subscriber>

<subscriber profile_name="subs_33">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_3</name>
</names>

</partition>
</qos>

</subscriber>

<subscriber profile_name="subs_34">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
</subscriber>

42 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

9.3 Intra-process delivery

eProsima Fast RTPS allows to speed up communications between entities within the same process by avoiding any of
the copy or send operations involved in the transport layer (either UDP or TCP). This feature is enabled by default,
and can be configured using XML profiles. Currently the following options are available:

• INTRAPROCESS_OFF: The feature is disabled.

• INTRAPROCESS_USER_DATA_ONLY: Discovery metadata keeps using ordinary transport.

• INTRAPROCESS_FULL: Default value. Both user data and discovery metadata using Intra-process delivery.

XML

<library_settings>
<intraprocess_delivery>FULL</intraprocess_delivery> <!-- OFF | USER_DATA_

→˓ONLY | FULL -->
</library_settings>

9.4 Transports

eProsima Fast RTPS implements an architecture of pluggable transports. Current version implements five transports:
UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory). By default, when a Participant is created, two
built-in transports are configured:

• SHM transport will be used for all communications between participants in the same machine.

• UDPv4 will be used for inter machine communications.

You can add custom transports using the attribute rtps.userTransports.

9.3. Intra-process delivery 43

FastRTPS Documentation, Release 1.10.0

C++

//Create a descriptor for the new transport.
auto custom_transport = std::make_shared<UDPv4TransportDescriptor>();

custom_transport->sendBufferSize = 9216;
custom_transport->receiveBufferSize = 9216;

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(custom_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>my_transport</transport_id>
<type>UDPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="my_transport">
<rtps>

<userTransports>
<transport_id>my_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

All Transport configuration options can be found in the section Transport descriptors.

9.4.1 Shared memory Transport (SHM)

The shared memory transport enables fast communications between entities running in the same processing
unit/machine, relying on the shared memory mechanisms provided by the host operating system.

SHM transport provides better performance than other transports like UDP / TCP, even when these transports use
loopback interface. This is mainly due to the following reasons:

• Large message support: Network protocols need to fragment data in order to comply with the specific protocol
and network stacks requirements. SHM transport allows the copy of full messages where the only size limit is
the machine’s memory capacity.

• Reduce the number of memory copies: When sending the same message to different endpoints, SHM transport
can directly share the same memory buffer with all the destination endpoints. Other protocols require to perform
one copy of the message per endpoint.

• Less operating system overhead: Once initial setup is completed, shared memory transfers require much less
system calls than the other protocols. Therefore there is a performance/time consume gain by using SHM.

When two participants on the same machine have SHM transport enabled, all communications between them are
automatically performed by SHM transport only. The rest of the enabled transports are not used between those two

44 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

participants.

In order to change the default parameters of SHM transport, you need to add the SharedMemTransportDescriptor to
the rtps.userTransports attribute (C++ code) or define a transport_descriptor of type SHM in the XML file.
In both cases rtps.useBuiltinTransports must be disabled (see below examples).

C++

// Create a descriptor for the new transport.
std::shared_ptr<SharedMemTransportDescriptor> shm_transport = std::make_shared
→˓<SharedMemTransportDescriptor>();

// Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

// Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(shm_transport);

XML

<transport_descriptors>
<!-- Create a descriptor for the new transport -->
<transport_descriptor>

<transport_id>shm_transport</transport_id>
<type>SHM</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="SHMParticipant">
<rtps>

<!-- Link the Transport Layer to the Participant -->
<userTransports>

<transport_id>shm_transport</transport_id>
</userTransports>
<!-- Disable the built-in Transport Layer -->
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

SHM configuration parameters:

• segment_size: The size of the shared memory segment in bytes. A shared memory segment is created by
each participant. Participant’s writers copy their messages into the segment and send a message reference to the
destination readers.

• port_queue_capacity: Each participant with SHM transport enabled listens on a queue (port) for incom-
ing SHM message references. This parameter specifies the queue size (in messages).

• healthy_check_timeout_ms: With SHM, Readers and writers use a queue to exchange messages (called
Port). If one of the processes involved crashes while using the port, the structure can be left inoperative. For
this reason, every time a port is opened, a healthy check is performed. If the attached listeners don’t respond in
healthy_check_timeout_ms milliseconds, the port is destroyed and created again.

• rtps_dump_file: Full path, including the file name, of the protocol dump_file. When this string parameter
is not empty, all the participant’s SHM traffic (sent and received) is traced to a file. The output file format is
tcpdump text hex, and can be read with protocol analyzer applications such as Wireshark.

9.4. Transports 45

FastRTPS Documentation, Release 1.10.0

9.4.2 TCP Transport

Unlike UDP, TCP transport is connection oriented and for that Fast-RTPS must establish a TCP connection before
sending the RTPS messages. Therefore TCP transport can have two behaviors, acting as a server (TCP Server) or as
a client (TCP Client). The server opens a TCP port listening for incoming connections and the client tries to connect
to the server. The server and the client concepts are independent from the RTPS concepts: Publisher, Subscriber,
Writer, and Reader. Any of them can operate as a TCP Server or a TCP Client because these entities are used only
to establish the TCP connection and the RTPS protocol works over it.

To use TCP transports you need to define some more configurations:

You must create a new TCP transport descriptor, for example TCPv4. This transport descriptor has a field named
listening_ports that indicates to Fast-RTPS in which physical TCP ports our participant will listen for input
connections. If omitted, the participant will not be able to receive incoming connections but will be able to connect to
other participants that have configured their listening ports. The transport must be added to the userTransports
list of the participant attributes. The field wan_addr can be used to allow incoming connections using the public IP
in a WAN environment or the Internet. See WAN or Internet Communication over TCP/IPv4 for more information
about how to configure a TCP Transport to allow or connect to WAN connections.

C++

//Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp_transport</transport_id>
<type>TCPv4</type>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>

<userTransports>
<transport_id>tcp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

To configure the participant to connect to another node through TCP, you must configure and add a Locator to its
initialPeersList that points to the remote listening port.

46 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

auto tcp2_transport = std::make_shared<TCPv4TransportDescriptor>();

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peer_locator);

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp2_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp2_transport</transport_id>
<type>TCPv4</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>

<userTransports>
<transport_id>tcp2_transport</transport_id>

</userTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

A TCP version of helloworld example can be found in this link.

WAN or Internet Communication over TCP/IPv4

Fast-RTPS is able to connect through the Internet or other WAN networks when configured properly. To achieve
this kind of scenarios, the involved network devices such as routers and firewalls should add the rules to allow the
communication.

For example, to allow incoming connections through our NAT, Fast-RTPS must be configured as a TCP Server
listening to incoming TCP connections. To allow incoming connections through a WAN, the TCP descriptor associated

9.4. Transports 47

https://github.com/eProsima/Fast-RTPS/tree/master/examples/C%2B%2B/HelloWorldExampleTCP

FastRTPS Documentation, Release 1.10.0

must indicate its public IP through its field wan_addr.

C++

//Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp_transport</transport_id>
<type>TCPv4</type>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>

<userTransports>
<transport_id>tcp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

In this case, configuring the router (which public IP is 80.80.99.45) is mandatory to allow the incoming traffic to
reach the TCP Server. Typically a NAT routing with the listening_port 5100 to our machine is enough. Any
existing firewall should be configured as well.

In the client side, it is needed to specify the public IP of the TCP Server with its listening_port as
initial_peer.

48 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

auto tcp2_transport = std::make_shared<TCPv4TransportDescriptor>();

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peer_locator);

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(tcp2_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp2_transport</transport_id>
<type>TCPv4</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>

<userTransports>
<transport_id>tcp2_transport</transport_id>

</userTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

The combination of the above configurations in both TCP Server and TCP Client allows a scenario similar to the
represented by the following image.

9.4. Transports 49

FastRTPS Documentation, Release 1.10.0

IPLocator

IPLocator is an auxiliary static class that offers methods to ease the management of IP based locators, as UDP or TCP.
In TCP, the port field of the locator is divided into physical and logical port. The physical port is the port used by
the network device, the real port that the operating system understands. The logical port can be seen as RTPS port,
or UDP’s equivalent port (physical ports of UDP, are logical ports in TCP). Logical ports normally are not necessary
to manage explicitly, but you can do it through IPLocator class. Physical ports instead, must be set to explicitly use
certain ports, to allow the communication through a NAT, for example.

Locator_t locator;
// Get & Set Physical Port
uint16_t physical_port = IPLocator::getPhysicalPort(locator);
IPLocator::setPhysicalPort(locator, 5555);

// Get & Set Logical Port
uint16_t logical_port = IPLocator::getLogicalPort(locator);
IPLocator::setLogicalPort(locator, 7400);

// Set WAN Address
IPLocator::setWan(locator, "80.88.75.55");

NOTE

TCP doesn’t support multicast scenarios, so you must plan carefully your network architecture.

TLS over TCP

Fast-RTPS allows configuring a TCP Transport to use TLS (Transport Layer Security) by setting up TCP Server and
TCP Client properly.

TCP Server

50 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

using TLSOptions = TCPTransportDescriptor::TLSConfig::TLSOptions;
tls_transport->apply_security = true;
tls_transport->tls_config.password = "test";
tls_transport->tls_config.cert_chain_file = "server.pem";
tls_transport->tls_config.private_key_file = "serverkey.pem";
tls_transport->tls_config.tmp_dh_file = "dh2048.pem";
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tls_transport_server</transport_id>
<type>TCPv4</type>
<tls>

<password>test</password>
<private_key_file>serverkey.pem</private_key_file>
<cert_chain_file>server.pem</cert_chain_file>
<tmp_dh_file>dh2048.pem</tmp_dh_file>
<options>

<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSLV2</option>

</options>
</tls>

</transport_descriptor>
</transport_descriptors>

TCP Client

9.4. Transports 51

FastRTPS Documentation, Release 1.10.0

C++

auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

using TLSOptions = TCPTransportDescriptor::TLSConfig::TLSOptions;
using TLSVerifyMode = TCPTransportDescriptor::TLSConfig::TLSVerifyMode;
tls_transport->apply_security = true;
tls_transport->tls_config.verify_file = "ca.pem";
tls_transport->tls_config.verify_mode = TLSVerifyMode::VERIFY_PEER;
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>tls_transport_client</transport_id>
<type>TCPv4</type>
<tls>

<verify_file>ca.pem</verify_file>
<verify_mode>

<verify>VERIFY_PEER</verify>
</verify_mode>
<options>

<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSLV2</option>

</options>
</tls>

</transport_descriptor>
</transport_descriptors>

More TLS related options can be found in the section Transport descriptors.

9.4.3 Listening locators

eProsima Fast RTPS divides listening locators into four categories:

• Metatraffic Multicast Locators: these locators are used to receive metatraffic information using multicast. They
usually are used by built-in endpoints, like the discovery of built-in endpoints. You can set your own locators
using attribute rtps.builtin.metatrafficMulticastLocatorList.

// This locator will open a socket to listen network messages on UDPv4 port 22222
→˓over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0 , 1);
locator.port = 22222;

participant_attr.rtps.builtin.metatrafficMulticastLocatorList.push_back(locator);

• Metatraffic Unicast Locators: these locators are used to receive metatraffic information using unicast. They
usually are used by built-in endpoints, like the discovery of built-in endpoints. You can set your own locators
using attribute rtps.builtin.metatrafficUnicastLocatorList.

52 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

// This locator will open a socket to listen network messages on UDPv4 port 22223
→˓over network interface 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0 , 1);
locator.port = 22223;

participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(locator);

• User Multicast Locators: these locators are used to receive user information using multicast. They are used by
user endpoints. You can set your own locators using attribute rtps.defaultMulticastLocatorList.

// This locator will open a socket to listen network messages on UDPv4 port 22224
→˓over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0 , 1);
locator.port = 22224;

participant_attr.rtps.defaultMulticastLocatorList.push_back(locator);

• User Unicast Locators: these locators are used to receive user information using unicast. They are used by user
endpoints. You can set your own locators using attributes rtps.defaultUnicastLocatorList.

// This locator will open a socket to listen network messages on UDPv4 port 22225
→˓over network interface 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0 , 1);
locator.port = 22225;

participant_attr.rtps.defaultUnicastLocatorList.push_back(locator);

By default eProsima Fast RTPS calculates the listening locators for the built-in UDPv4 network transport using well-
known ports. These well-known ports are calculated using the following predefined rules:

Table 1: Ports used
Traffic type Well-known port expression
Metatraffic multicast PB + DG * domainId + offsetd0
Metatraffic unicast PB + DG * domainId + offsetd1 + PG * participantId
User multicast PB + DG * domainId + offsetd2
User unicast PB + DG * domainId + offsetd3 + PG * participantId

These predefined rules use some values explained here:

• DG: DomainId Gain. You can set this value using attribute rtps.port.domainIDGain.

• PG: ParticipantId Gain. You can set this value using attribute rtps.port.participantIDGain. The
default value is 2.

• PB: Port Base number. You can set this value using attribute rtps.port.portBase. The default value is
7400.

• offsetd0, offsetd1, offsetd2, offsetd3: Additional offsets. You can set these values using attributes rtps.
port.offsetdN. Default values are: offsetd0 = 0, offsetd1 = 10, offsetd2 = 1, offsetd3
= 11.

Both UDP and TCP unicast locators support to have a null address. In that case, eProsima Fast RTPS understands to
get local network addresses and use them.

9.4. Transports 53

FastRTPS Documentation, Release 1.10.0

Both UDP and TCP locators support to have a zero port. In that case, eProsima Fast RTPS understands to calculate
well-known port for that type of traffic.

9.4.4 Initial peers

According to the RTPS standard (Section 9.6.1.1), each participant must listen for incoming Participant Discovery
Protocol (PDP) discovery metatraffic in two different ports, one linked with a multicast address, and another one
linked to a unicast address (see Discovery). Fast-RTPS allows for the configuration of an initial peers list which
contains one or more such address-port pairs corresponding to remote participants PDP discovery listening resources,
so that the local participant will not only send its PDP traffic to the default multicast address-port specified by its
domain, but also to all the address-port pairs specified in the initial-peers list.

A participant’s initial peers list contains the list of address-port pairs of all other participants with which it will com-
municate. It is a list of addresses that a participant will use in the unicast discovery mechanism, together or as an
alternative to multicast discovery. Therefore, this approach also applies to those scenarios in which multicast func-
tionality is not available.

According to the RTPS standard (Section 9.6.1.1), the participants’ discovery traffic unicast listening ports are calcu-
lated using the following equation: 7400 + 250 * domainID + 10 + 2 * participantID. Thus, if for example a participant
operates in Domain 0 (default domain) and its ID is 1, its discovery traffic unicast listening port would be: 7400 + 250
* 0 + 10 + 2 * 1 = 7412. By default eProsima Fast RTPS uses as initial peers the Metatraffic Multicast Locators.

The following constitutes an example configuring an Initial Peers list with one peer on host 192.168.10.13 with par-
ticipant ID 1 in domain 0.

C++

Locator_t initial_peers_locator;
IPLocator::setIPv4(initial_peers_locator, "192.168.10.13");
initial_peers_locator.port = 7412;
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peers_locator);

XML

<participant profile_name="initial_peers_example_profile" is_default_profile="true">
<rtps>

<builtin>
<initialPeersList>

<locator>
<udpv4>

<address>192.168.10.13</address>
<port>7412</port>

</udpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

9.4.5 Whitelist Interfaces

There could be situations where you want to block some network interfaces to avoid connections or sending data
through them. This can be managed using the field interface whitelist in the transport descriptors, and with them, you

54 Chapter 9. Advanced Functionalities

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

FastRTPS Documentation, Release 1.10.0

can set the interfaces you want to use to send or receive packets. The values on this list should match the IPs of your
machine in that networks. For example:

C++

UDPv4TransportDescriptor descriptor;
descriptor.interfaceWhiteList.emplace_back("127.0.0.1");

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>CustomTransport</transport_id>
<type>UDPv4</type>
<interfaceWhiteList>

<address>127.0.0.1</address>
</interfaceWhiteList>

</transport_descriptor>
<transport_descriptor>

9.4.6 Tips

Disabling all multicast traffic

9.4. Transports 55

FastRTPS Documentation, Release 1.10.0

C++

// Metatraffic Multicast Locator List will be empty.
// Metatraffic Unicast Locator List will contain one locator, with null address and
→˓null port.
// Then eProsima Fast RTPS will use all network interfaces to receive network
→˓messages using a well-known port.
Locator_t default_unicast_locator;
participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(default_
→˓unicast_locator);

// Initial peer will be UDPv4 addresss 192.168.0.1. The port will be a well-known
→˓port.
// Initial discovery network messages will be sent to this UDPv4 address.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, 192, 168, 0, 1);
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peer);

XML

<participant profile_name="disable_multicast" is_default_profile="true">
<rtps>

<builtin>
<metatrafficUnicastLocatorList>

<locator/>
</metatrafficUnicastLocatorList>
<initialPeersList>

<locator>
<udpv4>

<address>192.168.0.1</address>
</udpv4>

</locator>
</initialPeersList>

</builtin>
</rtps>

</participant>

Non-blocking write on sockets

For UDP transport, it is possible to configure whether to use non-blocking write calls on the sockets.

56 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

//Create a descriptor for the new transport.
auto non_blocking_UDP_transport = std::make_shared<UDPv4TransportDescriptor>();
non_blocking_UDP_transport->non_blocking_send = false;

//Disable the built-in Transport Layer.
participant_attr.rtps.useBuiltinTransports = false;

//Link the Transport Layer to the Participant.
participant_attr.rtps.userTransports.push_back(non_blocking_UDP_transport);

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>non_blocking_transport</transport_id>
<type>UDPv4</type>
<non_blocking_send>false</non_blocking_send>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="non_blocking_transport">
<rtps>

<userTransports>
<transport_id>non_blocking_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

XML Configuration

The XML profiles section contains the full information about how to setup Fast RTPS through an XML file.

9.5 Flow Controllers

eProsima Fast RTPS supports user configurable flow controllers on a Publisher and Participant level. These con-
trollers can be used to limit the amount of data to be sent under certain conditions depending on the kind of controller
implemented.

The current release implement throughput controllers, which can be used to limit the total message throughput to be
sent over the network per time measurement unit. In order to use them, a descriptor must be passed into the Participant
or Publisher Attributes.

9.5. Flow Controllers 57

FastRTPS Documentation, Release 1.10.0

C++

// Limit to 300kb per second.
ThroughputControllerDescriptor slowPublisherThroughputController{300000, 1000};
publisher_attr.throughputController = slowPublisherThroughputController;

XML

<publisher profile_name="publisher_profile_qos_flowcontroller">
<throughputController>

<bytesPerPeriod>300000</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>
</publisher>

In the Writer-Reader layer, the throughput controller is built-in and the descriptor defaults to infinite throughput. To
change the values:

WriterAttributes writer_attr;
writer_attr.throughputController.bytesPerPeriod = 300000; //300kb
writer_attr.throughputController.periodMillisecs = 1000; //1000ms

//CONF-QOS-PUBLISHMODE
// Allows fragmentation.
publisher_attr.qos.m_publishMode.kind = ASYNCHRONOUS_PUBLISH_MODE;

Note that specifying a throughput controller with a size smaller than the socket size can cause messages to never
become sent.

9.6 Sending large data

The default message size eProsima Fast RTPS uses is a conservative value of 65Kb. If your topic data is bigger, it
must be fragmented.

Fragmented messages are sent over multiple packets, as understood by the particular transport layer. To make this
possible, you must configure the Publisher to work in asynchronous mode.

C++

// Allows fragmentation.
publisher_attr.qos.m_publishMode.kind = ASYNCHRONOUS_PUBLISH_MODE;

XML

<publisher profile_name="publisher_profile_qos_publishmode">
<qos>

<publishMode>
<kind>ASYNCHRONOUS</kind>

</publishMode>
</qos>

</publisher>

58 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

In the Writer-Subscriber layer, you have to configure the Writer:

WriterAttributes write_attr;
write_attr.mode = ASYNCHRONOUS_WRITER; // Allows fragmentation

Note that in best-effort mode messages can be lost if you send big data too fast and the buffer is filled at a faster rate
than what the client can process messages. On the other hand, in reliable mode, the existence of a lot of data fragments
could decrease the frequency at which messages are received. If this happens, it can be resolved by increasing socket
buffers size, as described in Increasing socket buffers size. It can also help to set a lower Heartbeat period in reliable
mode, as stated in Tuning Reliable mode.

When you are sending large data, it is convenient to setup a flow controller to avoid a burst of messages in the network
and increase performance. See Flow Controllers

9.6.1 Example: Sending a unique large file

This is a proposed example of how should the user configure its application in order to achieve the best performance.
To make this example more tangible, it is going to be supposed that the file has a size of 9.9MB and the network in
which the publisher and the subscriber are operating has a bandwidth of 100MB/s

First of all, the asynchronous mode has to be activated in the publisher parameters. Then, a suitable reliability mode
has to be selected. In this case, it is important to make sure that all fragments of the message are received. The loss of
a fragment means the loss of the entire message, so it would be best to choose the reliable mode.

The default message size of this fragments using the UDPv4 transport has a value of 65Kb (which includes the space
reserved for the data and the message header). This means that the publisher would have to write at least about 1100
fragments.

This amount of fragment could slow down the transmission, so it could be interesting to decrease the heartbeat period
in order to increase the reactivity of the publisher.

Another important consideration is the addition of a flow controller. Without a flow controller, the publisher can
occupy the entire bandwidth. A reasonable flow controller for this application could be a limit of 5MB/s, which
represents only 5% of the total bandwidth. Anyway, these values are highly dependent on the specific application and
its desired behavior.

At last, there is another detail to have in mind: it is critical to check the size of the system UDP buffers. In Linux,
buffers can be enlarged with

sysctl -w net.ipv4.udp_mem="102400 873800 16777216"
sysctl -w net.core.netdev_max_backlog="30000"
sysctl -w net.core.rmem_max="16777216"
sysctl -w net.core.wmem_max="16777216"

9.6.2 Example: Video streaming

In this example, the target application transmits video between a publisher and a subscriber. This video will have a
resolution of 640x480 and a frequency of 50fps.

As in the previous example, since the application is sending data that requires fragmentation, the asynchronous mode
has to be activated in the publisher parameters.

In audio or video transmissions, sometimes is better to have a stable and high datarate feed than a 100% lossless
communication. Working with a frequency of 50Hz makes insignificant the loss of one or two samples each second.
Thus, for a higher performance, it can be appropriate to configure the reliability mode to best-effort.

9.6. Sending large data 59

FastRTPS Documentation, Release 1.10.0

9.7 Discovery

Fast-RTPS, as a DDS implementation, provides discovery mechanisms that allow for automatically finding and match-
ing publishers and subscribers across participants so they can start sharing data. This discovery is performed, for all
the mechanisms, in two phases.

9.7.1 Discovery phases

1. Participant Discovery Phase (PDP): During this phase the participants acknowledge each other’s existence.
To do that, each participant sends periodic announcement messages, which specify, among other things, unicast
addresses (IP and port) where the participant is listening for incoming meta and user data traffic. Two given
participants will match when they exist in the same domain. By default, the announcement messages are sent
using well-known multicast addresses and ports (calculated using the domain). Furthermore, it is possible to
specify a list of addresses to send announcements using unicast (see in Initial peers). Moreover, is is also
possible to configure the periodicity of such announcements (see Discovery Configuration).

2. Endpoint Discovery Phase (EDP): During this phase, the publishers and subscribers acknowledge each other.
To do that, the participants share information about their publishers and subscribers with each other, using
the communication channels established during the PDP. This information contains, among other things, the
topic and data type. For two endpoints to match, their topic and data type must coincide. Once publisher and
subscriber have matched, they are ready for sending/receiving user data traffic.

9.7.2 Discovery mechanisms

Fast-RTPS provides the following discovery mechanisms:

• Simple Discovery: This is the default mechanism. It upholds the RTPS standard for both PDP and EDP phases,
and therefore provides compatibility with any other DDS and RTPS implementations.

• Static Discovery: This mechanisms uses the Simple Participant Discovery Protocol (SPDP) for the PDP phase
(as specified by the RTPS standard), but allows for skipping the Simple Participant Discovery Protocol (SEDP)
phase when all the publishers’ and subscribers’ addresses and ports, data types, and topics are known before-
hand.

• Server-Client Discovery: This discovery mechanism uses a centralized discovery architecture, where servers act
as a hubs for discovery meta traffic.

• Manual Discovery: This mechanism is only compatible with the RTPSDomain layer. It disables the PDP
discovery phase, letting the user to manually match and unmatch RTPS participants, readers, and writers using
whatever, external meta-information channel of its choice.

9.7.3 General discovery settings

Some discovery settings are shared across the different discovery mechanisms. Those are:

60 Chapter 9. Advanced Functionalities

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

FastRTPS Documentation, Release 1.10.0

Name Description Type Default
Discovery
Protocol

The discovery protocol to use (see Discovery mechanisms) DiscoveryProtocol_tSIMPLE

Ignore Par-
ticipant
flags

Filter discovery traffic for participants in the same process,
in different processes, or in different hosts

ParticipantFilteringFlags_tNO_FILTER

Lease Dura-
tion

Indicates for how much time should a remote participant
consider the local participant to be alive.

Duration_t 20 s

Announce-
ment Period

The period for the participant to send PDP announcements. Duration_t 3 s

Discovery Protocol

Specifies the discovery protocol to use (see Discovery mechanisms). The possible values are:

Dis-
covery
Mecha-
nism

Pos-
sible
values

Description

Simple SIMPLE Simple discovery protocol as specified in RTPS standard
Static STATIC SPDP with manual EDP specified in XML files
Server-
Client

SERVER The participant acts as a hub for discovery traffic, receiving and distributing discovery
information.

CLIENT The participant acts as a client for discovery traffic. It send its discovery information to the
server, and receives all other discovery information from the server.

BACKUP Creates a SERVER participant which has a persistent sqlite database. A BACKUP
server can load the a database on start. This type of sever makes the Server-Client archi-
tecture resilient to server destruction.

Manual NONE Disables PDP phase, therefore the is no EDP phase. All matching must be done manually
through the addReaderLocator, addReaderProxy, addWriterProxy methods.

C++

participant_attr.rtps.builtin.discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::SIMPLE;

XML

<participant profile_name="participant_discovery_protocol">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>SIMPLE</discoveryProtocol>
</discovery_config>

</builtin>
</rtps>

</participant>

9.7. Discovery 61

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

FastRTPS Documentation, Release 1.10.0

Ignore Participant flags

Defines a filter to ignore some discovery traffic when received. This is useful to add an extra level of participant
isolation. The possible values are:

Possible values Description
NO_FILTER All Discovery traffic is processed.
FILTER_DIFFERENT_HOST Discovery traffic from another host is discarded.
FILTER_DIFFERENT_PROCESS Discovery traffic from another process on the same host

is discarded,
FILTER_SAME_PROCESS Discovery traffic from participant’s own process is dis-

carded.
FILTER_DIFFERENT_PROCESS |
FILTER_SAME_PROCESS

Discovery traffic from participant’s own host is dis-
carded.

C++

participant_attr.rtps.builtin.discovery_config.ignoreParticipantFlags =
static_cast<ParticipantFilteringFlags_t>(

ParticipantFilteringFlags_t::FILTER_DIFFERENT_PROCESS |
ParticipantFilteringFlags_t::FILTER_SAME_PROCESS);

XML

<participant profile_name="participant_discovery_ignore_flags">
<rtps>

<builtin>
<discovery_config>

<ignoreParticipantFlags>FILTER_DIFFERENT_PROCESS | FILTER_SAME_
→˓PROCESS</ignoreParticipantFlags>

</discovery_config>
</builtin>

</rtps>
</participant>

Lease Duration

Indicates for how much time should a remote participant consider the local participant to be alive. If the liveliness of
the local participant has not being asserted within this time, the remote participant considers the local participant dead
and destroys all the information regarding the local participant and all its endpoints.

The local participant’s liveliness is asserted on the remote participant any time the remote participant receives any kind
of traffic from the local participant.

The lease duration is specified as a time expressed in seconds and nanosecond using a Duration_t.

62 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

participant_attr.rtps.builtin.discovery_config.leaseDuration = Duration_t(10, 20);

XML

<participant profile_name="participant_discovery_lease_duration">
<rtps>

<builtin>
<discovery_config>

<leaseDuration>
<sec>10</sec>
<nanosec>20</nanosec>

</leaseDuration>
</discovery_config>

</builtin>
</rtps>

</participant>

Announcement Period

It specifies the periodicity of the participant’s PDP announcements. For liveliness’ sake it is recommend that the
announcement period is shorter than the lease duration, so that the participant’s liveliness is asserted even when there
is no data traffic. It is important to note that there is a trade-off involved in the setting of the announcement period, i.e.
too frequent announcements will bloat the network with meta traffic, but too scarce ones will delay the discovery of
late joiners.

Participant’s announcement period is specified as a time expressed in seconds and nanosecond using a Duration_t.

C++

participant_attr.rtps.builtin.discovery_config.leaseDuration_announcementperiod =
→˓Duration_t(1, 2);

XML

<participant profile_name="participant_discovery_lease_announcement">
<rtps>

<builtin>
<discovery_config>

<leaseAnnouncement>
<sec>1</sec>
<nanosec>2</nanosec>

</leaseAnnouncement>
</discovery_config>

</builtin>
</rtps>

</participant>

9.7. Discovery 63

FastRTPS Documentation, Release 1.10.0

9.7.4 SIMPLE Discovery Settings

The SIMPLE discovery protocol resolves the establishment of the end-to-end connection between various RTPS enti-
ties communicating via the RTPS protocol. Fast-RTPS implements the SIMPLE discovery protocol to provide com-
patibility with the RTPS standard. The specification splits up the SIMPLE discovery protocol into two independent
protocols:

• Simple Participant Discovery Protocol (SPDP): specifies how Participants discover each other in the network;
it announces and detects the presence of participants in a domain.

• Simple Endpoint Discovery Protocol (SEDP): defines the protocol adopted by the discovered participants for
the exchange of information in order to discover the RTPS entities contained in each of them, i.e. the writer and
reader Endpoints.

Name Description
Initial Announcements It defines the behavior of the RTPSParticipant initial announcements.
Simple EDP Attributes It defines the use of the SIMPLE protocol as a discovery protocol.
Initial Peers A list of endpoints to which the SPDP announcements are sent.

Initial Announcements

RTPS standard simple discovery mechanism requires the participant to send announcements. These announcements
are not delivered in a reliable fashion, and can be disposed of by the network. In order to avoid the discovery delay
induced by message disposal, the initial announcement can be set up to make several shots, in order to increase proper
reception chances.

Initial announcements only take place upon participant creation. Once this phase is over, the only announce-
ments enforced are the standard ones based on the leaseDuration_announcementperiod period (not the
initial_announcements.period).

Name Description Type Default
count It defines the number of announcements to send at start-up. uint32 5
period It defines the specific period for initial announcements. Duration_t 100ms

64 Chapter 9. Advanced Functionalities

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

FastRTPS Documentation, Release 1.10.0

C++

participant_attr.rtps.builtin.discovery_config.initial_announcements.count = 5;
participant_attr.rtps.builtin.discovery_config.initial_announcements.period =
→˓Duration_t(0,100000000u);

XML

<participant profile_name="participant_profile_simple_discovery">
<rtps>

<builtin>
<discovery_config>

<initialAnnouncements>
<count>5</count>
<period>

<sec>0</sec>
<nanosec>100000000</nanosec>

</period>
</initialAnnouncements>

</discovery_config>
</builtin>

</rtps>
</participant>

Simple EDP Attributes

Name Description Type De-
fault

SIMPLE EDP It defines the use of the SIMPLE protocol as a discovery protocol for EDP
phase. A participant may create publishers, subscribers, both or neither.

bool true

Publication writer
and Subscription
reader

It is intended for participants that implement only one or more publishers, i.e. do
not implement subscribers. It allows the creation of only subscriber discovery
related EDP endpoints

bool true

Publication reader
and Subscription
writer

It is intended for participants that implement only one or more subscribers, i.e.
do not implement publishers. It allows the creation of only publisher discovery
related EDP endpoints.

bool true

9.7. Discovery 65

FastRTPS Documentation, Release 1.10.0

C++

participant_attr.rtps.builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol
→˓= true;
participant_attr.rtps.builtin.discovery_config.m_simpleEDP.use_
→˓PublicationWriterANDSubscriptionReader = true;
participant_attr.rtps.builtin.discovery_config.m_simpleEDP.use_
→˓PublicationReaderANDSubscriptionWriter = false;

XML

<participant profile_name="participant_profile_qos_discovery_edp">
<rtps>

<builtin>
<discovery_config>

<EDP>SIMPLE</EDP>
<simpleEDP>

<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>false</PUBREADER_SUBWRITER>

</simpleEDP>
</discovery_config>

</builtin>
</rtps>

</participant>

Initial Peers

By default, the SPDP protocol uses a well known multicast address for the participant discovery phase. With Fast-
RTPS, it is possible to expand the list of endpoints to which the participant announcements are sent by configuring a
list of initial peers, as explained in Initial peers.

9.7.5 STATIC Endpoints Discovery Settings

Fast-RTPS allows for the substitution of the SEDP protocol for the EDP phase with a static version that completely
eliminates EDP meta traffic. This can become useful when dealing with limited network bandwidth and a well-known
schema of publishers and subscribers. If all publishers and subscribers, and their topics and data types, are known
beforehand, the EDP phase can be replaced with a static configuration of peers. It is important to note that by doing
this, no EDP discovery meta traffic will be generated, and only those peers defined in the configuration will be able to
communicate. The STATIC endpoint discovery related settings are:

Name Description
STATIC EDP It activates the STATIC endpoint discovery protocol
STATIC EDP XML Files Specifica-
tion

Specifies an XML file containing a description of the remote endpoints.

Initial Announcements It defines the behavior of the RTPSParticipant initial announcements (PDP
phase).

STATIC EDP

To activate the STATIC EDP, the SEDP must be disabled on the participant attributes. This can be done either by code
or using an XML configuration file:

66 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

participant_attr.rtps.builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol
→˓= false;
participant_attr.rtps.builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol
→˓= true;

XML

<participant profile_name="participant_profile_static_edp">
<rtps>

<builtin>
<discovery_config>

<EDP>STATIC</EDP>
</discovery_config>

</builtin>
</rtps>

</participant>

STATIC EDP XML Files Specification

Since activating STATIC EDP suppresses all EDP meta traffic, the information about the remote entities (publishers
and subscribers) must be statically specified, which is done using dedicated XML files. A participant may load several
of such configuration files so that the information about different endpoints can be contained in one file, or split into
different files to keep it more organized. Fast-RTPS provides a Static Endpoint Discovery example that implements
this EDP discovery protocol.

The following table describes all the possible attributes of a STATIC EDP XML configuration file. A full example of
such file can be found in STATIC EDP XML Example.

9.7. Discovery 67

https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/StaticHelloWorldExample

FastRTPS Documentation, Release 1.10.0

Name Description Values Default
<userId> Mandatory. Uniquely identifies the endpoint. uint16_t 0
<entityID> EntityId of the endpoint. uint16_t 0
<expectsInlineQos>It indicates if QOS is expected inline. (reader only) bool false
<topicName>Mandatory. The topic of the remote endpoint.

Should match with one of the topics of the local
participant.

string_255

<topicDataType>Mandatory. The data type of the topic. string_255
<topicKind>The kind of topic. NO_KEY NO_KEY

WITH_KEY
<partitionQos>The name of a partition of the remote peer. Repeat

to configure several partitions.
string

<unicastLocator>Unicast locator of the participant. See Locators def-
inition.

<multicastLocator>Multicast locator of the participant. See Locators
definition.

<reliabilityQos>See the Reliability section. BEST_EFFORT_RELIABILITY_QOSBEST_EFFORT_RELIABILITY_QOS
RELIABLE_RELIABILITY_QOS

<durabilityQos>See the Setting the data durability kind section. VOLATILE_DURABILITY_QOSVOLATILE_DURABILITY_QOS
TRANSIENT_LOCAL_DURABILITY_QOS
TRANSIENT_DURABILITY_QOS

<ownershipQos>See Ownership QoS.
<livelinessQos>Defines the liveliness of the remote peer. See Live-

liness QoS.

Locators definition

Locators for remote peers are configured using <unicastLocator> and <multicastLocator> tags. These
take no value, and the locators are defined using tag attributes. Locators defined with <unicastLocator> and
<multicastLocator> are accumulative, so they can be repeated to assign several remote endpoints locators to
the same peer.

• address: a mandatory string representing the locator address.

• port: an optional uint16_t representing a port on that address.

Ownership QoS

The ownership of the topic can be configured using <ownershipQos> tag. It takes no value, and the configuration
is done using tag attributes:

• kind: can be one of SHARED_OWNERSHIP_QOS or EXCLUSIVE_OWNERSHIP_QOS. This attribute is
mandatory withing the tag.

• strength: an optional uint32_t specifying how strongly the remote participant owns the topic. This
attribute can be set on writers only. If not specified, default value is zero.

Liveliness QoS

The Liveliness of the remote peer is configured using <livelinessQos> tag. It takes no value, and the configura-
tion is done using tag attributes:

68 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

• kind: can be any of AUTOMATIC_LIVELINESS_QOS, MANUAL_BY_PARTICIPANT_LIVELINESS_QOS
or MANUAL_BY_TOPIC_LIVELINESS_QOS. This attribute is mandatory withing the tag.

• leaseDuration_ms: an optional UInt32 specifying the lease duration for the remote peer. The special
value INF can be used to indicate infinite lease duration. If not specified, default value is INF

STATIC EDP XML Example

The following is a complete example of a configuration XML file for two remote participants, a publisher and a
subscriber. This configuration must agree with the configuration used to create the remote endpoint. Otherwise,
communication between endpoints may be affected. If any non-mandatory element is missing, it will take the default
value. As a rule of thumb, all the elements that were specified on the remote endpoint creation should be configured.

XML

<staticdiscovery>
<participant>

<name>HelloWorldSubscriber</name>
<reader>

<userId>3</userId>
<entityId>4</entityId>
<expectsInlineQos>true</expectsInlineQos>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<unicastLocator address="192.168.0.128" port="5000"/>
<unicastLocator address="10.47.8.30" port="6000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QOS </reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>

</reader>
</participant>
<participant>

<name>HelloWorldPublisher</name>
<writer>

<unicastLocator address="192.168.0.120" port="9000"/>
<unicastLocator address="10.47.8.31" port="8000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<userId>5</userId>
<entityId>6</entityId>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QOS </reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS" strength="50"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>

</writer>
</participant>

</staticdiscovery>

9.7. Discovery 69

FastRTPS Documentation, Release 1.10.0

Loading STATIC EDP XML Files

Statically discovered remote endpoints must define a unique userID on their profile, whose value must agree with the
one specified in the discovery configuration XML. This is done by setting the user ID on the entity attributes:

C++

SubscriberAttributes sub_attr;
sub_attr.setUserDefinedID(3);

PublisherAttributes pub_attr;
pub_attr.setUserDefinedID(5);

XML

<publisher profile_name="publisher_xml_conf_static_discovery">
<userDefinedID>3</userDefinedID>

</publisher>

<subscriber profile_name="subscriber_xml_conf_static_discovery">
<userDefinedID>5</userDefinedID>

</subscriber>

On the local participant, loading STATIC EDP configuration files is done by:

C++

participant_attr.rtps.builtin.discovery_config.setStaticEndpointXMLFilename(
→˓"RemotePublisher.xml");
participant_attr.rtps.builtin.discovery_config.setStaticEndpointXMLFilename(
→˓"RemoteSubscriber.xml");

XML

<participant profile_name="participant_profile_static_load_xml">
<rtps>

<builtin>
<discovery_config>

<staticEndpointXMLFilename>RemotePublisher.xml</
→˓staticEndpointXMLFilename>

<staticEndpointXMLFilename>RemoteSubscriber.xml</
→˓staticEndpointXMLFilename>

</discovery_config>
</builtin>

</rtps>
</participant>

9.7.6 Server-Client Discovery

This mechanism is based on a client-server discovery paradigm, i.e. the metatraffic (message exchange among par-
ticipants to identify each other) is managed by one or several server participants (left figure), as opposed to simple
discovery (right figure), where metatraffic is exchanged using a message broadcast mechanism like an IP multicast
protocol.

70 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

Key concepts

In this architecture there are several key concepts to understand:

• The Server-client discovery mechanism reuses the RTPS discovery messages structure, as well as the standard
RTPS writers and readers.

• Discovery server participants may be clients or servers. The only difference between them is how they han-
dle meta-traffic. The user traffic, that is, the traffic among the publishers and subscribers they create is role-
independent.

• All server and client discovery info will be shared with linked clients. will be shared with the server or servers
linked to it. Note that a server may act as a client for other servers.

• Clients require a beforehand knowledge of the servers they want to link to. Basically it’s reduced to the server
identity (henceforth called GuidPrefix) and a list of locators where the server is listening. This locators
define also the transport protocol (UDP or TCP) the client will use to contact the server.

– The GuidPrefix is the RTPS standard participant unique identifier, a 12-byte chain. This identifier
allows clients to assess whether they are receiving messages from the right server, as each standard RTPS
message contains this piece of information.

– The GuidPrefix is used because the server’s IP address may not be a reliable enough server identi-
fier, since several servers can be hosted in the same machine, thus having the same IP, and also because
multicast addresses are acceptable addresses.

• Servers do not require any beforehand knowledge of their clients, but their GuidPrefix and locator list (where
they are listening) must match the one provided to the clients.

In order to gather client discovery info the following handshake strategy is followed:

– Clients send hailing messages to the servers at regular intervals (ping period) until they receive message
reception acknowledgement.

– Servers receive the hailing messages but they don’t start at once to share publishers or subscribers info
with the newcomers. They only trigger this process at regular intervals (match period). Tuning this period
is possible to bundle the discovery info and deliver it more efficiently.

In order to clarify this discovery setup either on compile time (sources) or runtime (XML files) we are going to split it
into two sections: one focusing on the main concepts (setup by concept) and the other on the main attribute structures
and XML tags (setup by attribute).

9.7. Discovery 71

FastRTPS Documentation, Release 1.10.0

Server-client setup by concept

Concept Description
Discovery protocol how to make a participant a client or a server.
Server unique id how to link a clients to servers.
Seting up transport how to specify which transport to use and make servers reachable.
Pinging period how to fine tune server-client handshake.
Matching period how to fine tune server deliver efficiency.

Choosing between client and server

It’s set by the Discovery Protocol general attribute. A participant can only play a role (despite the fact that a server
may act as a client of other server). It’s mandatory to fill this value because it defaults to simple. The values associated
with the Server-client discovery are specified in discovery settings section. The examples below show how to manage
the corresponding enum attribute and XML tag:

ParticipantAttributes.rtps.builtin.discovery_config.discoveryProtocol

dds>profiles>participant>rtps>builtin>discovery_config>discoveryProtocol

C++

DiscoverySettings & ds = participant_attr.rtps.builtin.discovery_config;
ds.discoveryProtocol = DiscoveryProtocol_t::CLIENT;
ds.discoveryProtocol = DiscoveryProtocol_t::SERVER;
ds.discoveryProtocol = DiscoveryProtocol_t::BACKUP;

XML

<participant profile_name="participant_discovery_protocol_alt" >
<rtps>
<builtin>

<discovery_config>
<discoveryProtocol>CLIENT</discoveryProtocol>
<!-- alternatives
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryProtocol>BACKUP</discoveryProtocol>
-->

</discovery_config>
</builtin>

</rtps>
</participant>

The server unique identifier GuidPrefix

This belongs to the RTPS specification and univocally identifies each DDS participant. It consists on 12 bytes and is
a key in the DDS domain. In the server-client discovery, it has the purpose to link a server to its clients. Note that
there is an auxiliary ReadguidPrefix method to populate the GuidPrefix using a string. It must be mandatorily
specified in: server side and client side setups.

72 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

Server side setup

The examples below show how to manage the corresponding enum attribute and XML tag:

ParticipantAttributes.rtps.prefix

dds>profiles>participant>rtps>prefix

C++

participant_attr.rtps.ReadguidPrefix("4D.49.47.55.45.4c.5f.42.41.52.52.4f");

XML

<participant profile_name="participant_server_guidprefix" >
<rtps>

<prefix>
4D.49.47.55.45.4c.5f.42.41.52.52.4f

</prefix>
</rtps>

</participant>

Note that a server can act as a client of other servers. Thus, the following section may also apply.

Client side setup

Each client must keep a list of the servers it wants to link to. Each single element represents an individual server and
a GuidPrefix must be provided. The server list is the attribute:

ParticipantAttributes.rtps.builtin.discovery_config.m_DiscoveryServers

and must be populated with RemoteServerAttributes objects with a valid guidPrefix member. In XML
the server list and its elements are simultaneously specified. Note that prefix is an attribute of the RemoteServer
tag.

dds>profiles>participant>rtps>builtin>discovery_config>discoveryServerList>
→˓RemoteServer@prefix

9.7. Discovery 73

FastRTPS Documentation, Release 1.10.0

C++

RemoteServerAttributes server;
server.ReadguidPrefix("4D.49.47.55.45.4c.5f.42.41.52.52.4f");

DiscoverySettings & ds = participant_attr.rtps.builtin.discovery_config;
ds.m_DiscoveryServers.push_back(server);

XML

<participant profile_name="participant_profile_discovery_client_prefix">
<rtps>
<builtin>

<discovery_config>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">

<metatrafficUnicastLocatorList>
<locator/>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>

The server locator list

Each server must specify valid locators where it can be reached. Any client must be given proper locators to reach
each of its servers. As in the above section, here there is a server and a client side setup.

Server side setup

The examples below show how to setup the locator list attribute (note that discovery strategy only deals with metatraffic
attributes) and XML tag:

ParticipantAttributes.rtps.builtin.
→˓(metatrafficMulticastLocatorList|metatrafficUnicastLocatorList)

dds>profiles>participant>rtps>builtin>
→˓(metatrafficMulticastLocatorList|metatrafficUnicastLocatorList)

74 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1 , 133);
locator.port = 64863;

LocatorList_t & ull = participant_attr.rtps.builtin.metatrafficUnicastLocatorList;
ull.push_back(locator);

XML

<participant profile_name="participant_profile_discovery_server_server_metatraffic">
<rtps>
<builtin>

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<!-- placeholder server UDP address -->

<address>192.168.1.113</address>
<port>64863</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

Note that a server can act as a client of other servers, thus, the following section may also apply.

Client side setup

Each client must keep a list of locators associated to the servers it wants to link to. Each server specifies its own
locators. The locator list is the attribute:

ParticipantAttributes.rtps.builtin.discovery_config.m_DiscoveryServers

and must be populated with RemoteServerAttributes objects with a valid
metatrafficUnicastLocatorList or metatrafficMulticastLocatorList member. In XML
the server list and its elements are simultaneously specified. Note the metatrafficUnicastLocatorList or
metatrafficMulticastLocatorList attributes of the RemoteServer tag.

dds>profiles>participant>rtps>builtin>discovery_config>discoveryServerList>
→˓RemoteServer@metatrafficUnicastLocatorList
dds>profiles>participant>rtps>builtin>discovery_config>discoveryServerList>
→˓RemoteServer@metatrafficMulticastLocatorList

9.7. Discovery 75

FastRTPS Documentation, Release 1.10.0

C++

eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1 , 133);
locator.port = 64863;
RemoteServerAttributes server;
server.metatrafficUnicastLocatorList.push_back(locator);

DiscoverySettings & ds = participant_attr.rtps.builtin.discovery_config;
ds.m_DiscoveryServers.push_back(server);

XML

<participant profile_name="participant_profile_discovery_server_client_metatraffic">
<rtps>
<builtin>

<discovery_config>
<discoveryServersList>

<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>
<!-- placeholder server UDP address -->

<address>192.168.1.113</address>
<port>64863</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>

Client ping period

As explained above the clients send hailing messages to the servers at regular intervals (ping period) until they receive
message reception acknowledgement. This period is specified in the member:

ParticipantAttributes.rtps.builtin.discovery_config.discoveryServer_client_syncperiod

or the XML tag:

dds>profiles>participant>rtps>builtin>discovery_config>clientAnnouncementPeriod

76 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

DiscoverySettings & ds = participant_attr.rtps.builtin.discovery_config;
ds.discoveryServer_client_syncperiod = Duration_t(0,250000000);

XML

<participant profile_name="participant_profile_client_ping" >
<rtps>
<builtin>

<discovery_config>
<clientAnnouncementPeriod>
<!-- change default to 250 ms -->
<nanosec>250000000</nanosec>

</clientAnnouncementPeriod>
</discovery_config>

</builtin>
</rtps>

</participant>

Server match period

As explained above the Servers received the hailing messages but they don’t start at once to share publishers or
subscribers info with the newcomers. They only trigger this process at regular intervals (match period). Note that this
member is shared with the client setup but its name references solely the client functionality. This period is specified
in the member:

ParticipantAttributes.rtps.builtin.discovery_config.discoveryServer_client_syncperiod

or the XML tag:

dds>profiles>participant>rtps>builtin>discovery_config>clientAnnouncementPeriod

C++

DiscoverySettings & ds = participant_attr.rtps.builtin.discovery_config;
ds.discoveryServer_client_syncperiod = Duration_t(0,250000000);

XML

<participant profile_name="participant_profile_server_ping" >
<rtps>
<builtin>

<discovery_config>
<clientAnnouncementPeriod>
<!-- change default to 250 ms -->
<nanosec>250000000</nanosec>

</clientAnnouncementPeriod>
</discovery_config>

</builtin>
</rtps>

</participant>

9.7. Discovery 77

FastRTPS Documentation, Release 1.10.0

Server-client setup by attribute

The settings related with server-client discovery are:

Name Description
RTPSParticipantAttributesSpecifies general participant settings. Some of them must be modified in order to properly

configure a Server like the GuidPrefix.
BuiltinAttributes It’s a member of the above RTPSParticipantAttributes structure. Allows to specify some manda-

tory server discovery settings like the addresses were it listens for clients discovery info.
DiscoverySettings It’s a member of the above BuiltinAttributes structure. Allows to specify some mandatory client

an optional server settings like the: whether it is a client or a server or the list of servers it is
linked to or the client-ping, server-match frequencies.

RTPSParticipantAttributes

A GuidPrefix_t guidPrefix member specifies the server’s identity. This member has only significance if
discovery_config.discoveryProtocol is SERVER or BACKUP. There is a ReadguidPrefixmethod
to easily fill in this member from a string formatted like "4D.49.47.55.45.4c.5f.42.41.52.52.4f" (note
that each byte must be a valid hexadecimal figure).

C++

participant_attr.rtps.ReadguidPrefix("4D.49.47.55.45.4c.5f.42.41.52.52.4f");

XML

<participant profile_name="participant_profile_discovery_client_prefix">
<rtps>
<builtin>

<discovery_config>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">

<metatrafficUnicastLocatorList>
<locator/>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>

BuiltinAttributes

All discovery related info is gathered in a DiscoverySettings discovery_config member.

In order to receive client metatraffic, metatrafficUnicastLocatorList or
metatrafficMulticastLocatorList must be populated with the addresses that were given to the
clients.

78 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1 , 133);
locator.port = 64863;

participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(locator);

XML

<participant profile_name="participant_profile_discovery_server_metatraffic">
<rtps>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>

</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>
<!-- placeholder server UDP address -->

<address>192.168.1.113</address>
<port>64863</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

DiscoverySettings

A discovery_protocol discoveryProtocol member specifies the participant’s discovery kind. As was explained
before to setup a server-client discovery it may be:

enum
value

Description

CLIENT Generates a client participant, which relies on a server (or servers) to be notified of other clients
presence.
This participant can create publishers and subscribers of any topic (static or dynamic) as ordinary
participants do.

SERVER Generates a server participant, which receives, manages and spreads its linked client’s metatraffic
assuring any single one is aware of the others. This participant can create publishers and subscribers
of any topic (static or dynamic) as ordinary participants do.
Servers can link to other servers in order to share its clients information.

BACKUP Generates a server participant with additional functionality over SERVER. Specifically, it uses a
database to backup its client information, so that if for whatever reason it disappears, it can be
automatically restored and continue spreading metatraffic to late joiners. A SERVER in the same
scenario ought to collect client information again, introducing a recovery delay.

A RemoteServerList_t m_DiscoveryServers that lists the servers linked to a client participant. This
member has only significance if discovery_protocol is CLIENT, SERVER or BACKUP. These member elements are
RemoteServerAttributes objects that identify each server and report where the servers can be reached:

9.7. Discovery 79

FastRTPS Documentation, Release 1.10.0

Attribute Description
GuidPrefix_t
guidPrefix

Is the RTPS unique identifier of the server participant we want to link to. There is a
ReadguidPrefix
method to easily fill in this member from a string formatted like "4D.49.47.55.45.4c.
5f.42.41.52.52.4f"
(note that each octet must be a valid hexadecimal figure).

metatrafficUnicastLocatorList
and
metatrafficMulticastLocatorList

Are ordinary LocatorList_t (see LocatorListType) where the server’s locators must be
specified. At least one of them should be populated.

Duration_t
discoveryServer_client_syncperiod

Has only significance if discovery_protocol is CLIENT, SERVER or BACKUP.
For a client it specifies the pinging period as explained in key concepts.
When a client has not yet established a reliable connection to a server it pings until the server
notices him and establishes the connection.
For a server it specifies the match period as explained in key concepts.
When a server discovers new clients it only starts exchanging info with them at regular
intervals as a mechanism to bundle discovery info and optimize delivery.
The default value is half a second.

80 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

C++

RemoteServerAttributes server;
server.ReadguidPrefix("4D.49.47.55.45.4c.5f.42.41.52.52.4f");

eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1 , 133);
locator.port = 64863;
server.metatrafficUnicastLocatorList.push_back(locator);

DiscoverySettings & ds = participant_attr.rtps.builtin.discovery_config;
ds.discoveryProtocol = DiscoveryProtocol_t::CLIENT;
ds.m_DiscoveryServers.push_back(server);
ds.discoveryServer_client_syncperiod = Duration_t(0,250000000);

XML

<participant profile_name="participant_profile_client" >
<rtps>
<builtin>

<discovery_config>
<discoveryProtocol>CLIENT</discoveryProtocol>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<!-- placeholder server UDP address -->
<address>192.168.1.113</address>
<port>64863</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
<clientAnnouncementPeriod>
<!-- change default to 250 ms -->
<nanosec>250000000</nanosec>

</clientAnnouncementPeriod>
</discovery_config>

</builtin>
</rtps>

</participant>

9.8 Subscribing to Discovery Topics

As specified in the Discovery section, the Participant or RTPS Participant has a series of meta-data endpoints for
use during the discovery process. The participant listener interface includes methods which are called each time a
Publisher or a Subscriber is discovered. This allows you to create your own network analysis tools.

9.8. Subscribing to Discovery Topics 81

FastRTPS Documentation, Release 1.10.0

Implementation of custom listener

class CustomParticipantListener : public eprosima::fastrtps::ParticipantListener
{

/* Custom Listener onSubscriberDiscovery */
void onSubscriberDiscovery(

eprosima::fastrtps::Participant * participant,
eprosima::fastrtps::rtps::ReaderDiscoveryInfo && info) override

{
(void)participant;
switch(info.status) {

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_READER:
/* Process the case when a new subscriber was found in the domain */
cout << "New subscriber for topic '" << info.info.topicName() << "'

→˓of type '" << info.info.typeName() << "' discovered";
break;

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::CHANGED_QOS_READER:
/* Process the case when a subscriber changed its QOS */
break;

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::REMOVED_READER:
/* Process the case when a subscriber was removed from the domain */
cout << "Subscriber for topic '" << info.info.topicName() << "' of

→˓type '" << info.info.typeName() << "' left the domain.";
break;

}
}

/* Custom Listener onPublisherDiscovery */
void onPublisherDiscovery(

eprosima::fastrtps::Participant * participant,
eprosima::fastrtps::rtps::WriterDiscoveryInfo && info) override

{
(void)participant;
switch(info.status) {

case eprosima::fastrtps::rtps::WriterDiscoveryInfo ::DISCOVERED_WRITER:
/* Process the case when a new publisher was found in the domain */
cout << "New publisher for topic '" << info.info.topicName() << "'

→˓of type '" << info.info.typeName() << "' discovered";
break;

case eprosima::fastrtps::rtps::WriterDiscoveryInfo ::CHANGED_QOS_WRITER:
/* Process the case when a publisher changed its QOS */
break;

case eprosima::fastrtps::rtps::WriterDiscoveryInfo ::REMOVED_WRITER:
/* Process the case when a publisher was removed from the domain */
cout << "publisher for topic '" << info.info.topicName() << "' of

→˓type '" << info.info.typeName() << "' left the domain.";
break;

}
}

};

Setting the custom listener

// Create Custom user ParticipantListener (should inherit from
→˓eprosima::fastrtps::ParticipantListener.
CustomParticipantListener *listener = new CustomParticipantListener();
// Pass the listener on participant creation.
Participant* participant = Domain::createParticipant(participant_attr, listener);

82 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

The callbacks defined in the ReaderListener you attach to the EDP will execute for each data message after the built-in
protocols have processed it.

9.9 Tuning

9.9.1 Taking advantage of multicast

For topics with several subscribers, it is recommendable to configure them to use multicast instead of unicast. By
doing so, only one network package will be sent for each sample. This will improve both CPU and network usage.
Multicast configuration is explained in Multicast locators.

9.9.2 Increasing socket buffers size

In high rate scenarios or large data scenarios, the bottleneck could be the size of the socket buffers. Network packages
could be dropped because there is no space in the socket buffer. Using Reliable Reliability Fast RTPS will try to
recover lost samples, but with the penalty of retransmission. Using Best-Effort Reliability samples will be definitely
lost.

By default eProsima Fast RTPS creates socket buffers with the system default size, but you can mod-
ify it. sendSocketBufferSize attribute helps to increase the socket buffer used to send data.
listenSocketBufferSize attribute helps to increase the socket buffer used to read data.

C++

participant_attr.rtps.sendSocketBufferSize = 1048576;
participant_attr.rtps.listenSocketBufferSize = 4194304;

XML

<participant profile_name="participant_xml_profile_qos_socketbuffers">
<rtps>

<sendSocketBufferSize>1048576</sendSocketBufferSize>
<listenSocketBufferSize>4194304</listenSocketBufferSize>

</rtps>
</participant>

Finding out system maximum values

Linux operating system sets a maximum value for socket buffer sizes. When you set in Fast RTPS a socket buffer size,
your value cannot exceed the maximum value of the system.

To get these values you can use the command sysctl. Maximum buffer size value of socket buffers used to send
data could be retrieved using this command:

$> sudo sysctl -a | grep net.core.wmem_max
net.core.wmem_max = 1048576

For socket buffers used to receive data the command is:

$> sudo sysctl -a | grep net.core.rmem_max
net.core.rmem_max = 4194304

9.9. Tuning 83

FastRTPS Documentation, Release 1.10.0

If these default maximum values are not enough for you, you can also increase them.

$> echo 'net.core.wmem_max=12582912' >> /etc/sysctl.conf
$> echo 'net.core.rmem_max=12582912' >> /etc/sysctl.conf

9.9.3 Tuning Reliable mode

RTPS protocol can maintain reliable communication using special messages (Heartbeat and Ack/Nack messages).
RTPS protocol can detect which samples are lost and re-sent them again.

You can modify the frequency these special submessages are exchanged by specifying a custom heartbeat period. The
heartbeat period in the Publisher-Subscriber level is configured as part of the ParticipantAttributes:

publisher_attr.times.heartbeatPeriod.seconds = 0;
publisher_attr.times.heartbeatPeriod.nanosec = 500000000; //500 ms

In the Writer-Reader layer, this belongs to the WriterAttributes:

writer_attr.times.heartbeatPeriod.seconds = 0;
writer_attr.times.heartbeatPeriod.nanosec = 500000000; //500 ms

A smaller heartbeat period increases the number of overhead messages in the network, but speeds up the system
response when a piece of data is lost.

Non-strict reliability

Using a strict reliability, configuring History kind as KEEP_ALL, determines all samples have to be received by all
subscribers. This implicates a performance decrease in case a lot of samples are dropped. If you don’t need this
strictness, use a non-strict reliability, i.e. configure History kind as KEEP_LAST.

9.9.4 Slow down sample rate

Sometimes publishers could send data in a too high rate for subscribers. This can end dropping samples. To avoid this
you can slow down the rate using Flow Controllers.

9.10 Additional Quality of Service options

As a user, you can implement your own quality of service (QoS) restrictions in your application. eProsima Fast RTPS
comes bundled with a set of examples of how to implement common client-wise QoS settings:

• Ownership Strength: When multiple data sources come online, filter duplicates by focusing on the higher priority
sources.

• Filtering: Filter incoming messages based on content, time, or both.

These examples come with their own Readme.txt that explains how the implementations work.

9.11 Logging

Fast RTPS includes an extensible logging system with the following class hierarchy:

84 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

Log is the entry point of the Logging system. It exposes three macro definitions to ease its usage:

logInfo(INFO_MSG, "This is an info message");
logWarning(WARN_MSG, "This is a warning message");
logError(ERROR_MSG, "This is an error message");

In all cases, INFO_MSG, WARN_MSG and ERROR_MSG will be used as category for the log entry as a preprocessor
string, so you can use define any category inline.

logInfo(NEW_CATEGORY, "This log message belong to NEW_CATEGORY category.");

You can control the verbosity of the log system and filter it by category:

Log::SetVerbosity(Log::Kind::Warning);
std::regex my_regex("NEW_CATEGORY");
Log::SetCategoryFilter(my_regex);

The possible verbosity levels are Log::Kind::Info, Log::Kind::Warning and Log::Kind::Error.

When selecting one of them, you also select the ones with more priority.

• Selecting Log::Kind::Error, you will only receive error messages.

• Selecting Log::Kind::Warning you select Log::Kind::Error too.

• Selecting Log::Kind::Info will select all of them

To filter by category, you must provide a valid std::regex expression that will be applied to the category. The
categories that matches the expression, will be logged.

By default, the verbosity is set to Log::Kind::Error and without category filtering.

There are some others configurable parameters:

//! Enables the reporting of filenames in log entries. Disabled by default.
RTPS_DllAPI static void ReportFilenames(bool);
//! Enables the reporting of function names in log entries. Enabled by default when
→˓supported.

(continues on next page)

9.11. Logging 85

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

RTPS_DllAPI static void ReportFunctions(bool);
//! Sets the verbosity level, allowing for messages equal or under that priority to
→˓be logged.
RTPS_DllAPI static void SetVerbosity(Log::Kind);
//! Returns the current verbosity level.
RTPS_DllAPI static Log::Kind GetVerbosity();
//! Sets a filter that will pattern-match against log categories, dropping any
→˓unmatched categories.
RTPS_DllAPI static void SetCategoryFilter (const std::regex&);
//! Sets a filter that will pattern-match against filenames, dropping any unmatched
→˓categories.
RTPS_DllAPI static void SetFilenameFilter (const std::regex&);
//! Sets a filter that will pattern-match against the provided error string, dropping
→˓any unmatched categories.
RTPS_DllAPI static void SetErrorStringFilter (const std::regex&);

9.11.1 LogConsumers

LogConsumers are classes that implement how to manage the log information. They must be registered into the Log
system to be called with the log messages (after filtering).

Currently there are two LogConsumer implementations:

• StdoutConsumer: Default consumer, it prints the logging messages to the standard output. It has no con-
figuration available.

• FileConsumer: It prints the logging messages to a file. It has two configuration parameters:

– filename that defines the file where the consumer will write the log messages.

– append that indicates to the consumer if the output file must be opened to append new content.

By default, filename is output.log and append is equals to false.

If you want to add a consumer to manage the logs, you must call the RegisterConsumer method of the Log. To
remove all consumers, including the default one, you should call the ClearConsumers method. If you want to reset
the Log configuration to its defaults, including recovering the default consumer, you can call to its Reset method.

Log::ClearConsumers(); // Deactivate StdoutConsumer

// Add FileConsumer consumer
std::unique_ptr<FileConsumer> fileConsumer(new FileConsumer("append.log", true));
Log::RegisterConsumer(std::move(fileConsumer));

// Back to its defaults: StdoutConsumer will be enable and FileConsumer removed.
Log::Reset();

9.11.2 XML Log configuration

You can configure the logging system through xml with the tag <log> under the <dds> tag, or as an standalone
file (without the <dds> tag, just <log> as root). You can set <use_default> and a set of <consumer>. Each
<consumer> is defined by its <class> and a set of <property>.

<log>
<use_default>FALSE</use_default>

(continues on next page)

86 Chapter 9. Advanced Functionalities

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<consumer>
<class>FileConsumer</class>
<property>

<name>filename</name>
<value>test1.log</value>

</property>
<property>

<name>append</name>
<value>TRUE</value>

</property>
</consumer>

</log>

<use_default> indicates if we want to use the default consumer StdoutConsumer.

Each <consumer> defines a consumer that will be added to the consumers list of the Log. <class> indicates
which consumer class to instantiate and the set of <property> configures it. StdoutConsumer has no properties
to be configured, but FileConsumer has filename and append.

This marks the end of this document. We recommend you to take a look at the Doxygen API reference and the em-
bedded examples that come with the distribution. If you need more help, send us an email to support@eprosima.com.

9.11. Logging 87

FastRTPS Documentation, Release 1.10.0

88 Chapter 9. Advanced Functionalities

CHAPTER 10

Security

Fast RTPS can be configured to provide secure communications. For this purpose, Fast RTPS implements pluggable
security at three levels: authentication of remote participants, access control of entities and encryption of data.

By default, Fast RTPS doesn’t compile security support. You can activate it adding -DSECURITY=ON at CMake
configuration step. For more information about Fast RTPS compilation, see Installation from Sources.

You can activate and configure security plugins through eprosima::fastrtps::Participant attributes using
properties. A eprosima::fastrtps::rtps::Property is defined by its name (std::string) and its
value (std::string). Throughout this page, there are tables showing you the properties used by each security
plugin.

10.1 Authentication plugins

They provide authentication on the discovery of remote participants. When a remote participant is detected, Fast RTPS
tries to authenticate using the activated Authentication plugin. If the authentication process finishes successfully then
both participants match and discovery protocol continues. On failure, the remote participant is rejected.

You can activate an Authentication plugin using Participant property dds.sec.auth.plugin. Fast RTPS provides
a built-in Authentication plugin. More information on Auth:PKI-DH.

10.2 Access control plugins

They provide validation of entities’ permissions. After a remote participant is authenticated, its permissions need to
be validated and enforced.

Access rights that each entity has over a resource are described. Main entity is the Participant and it is used to access
or produce information on a Domain; hence the Participant has to be allowed to run in a certain Domain. Also, a
Participant is responsible for creating Publishers and Subscribers that communicate over a certain Topic. Hence, a
Participant has to have the permissions needed to create a Topic, to publish through its Publishers certain Topics,
and to subscribe via its Subscribers to certain Topics. Access control plugin can configure the Cryptographic plugin
because its usage is based on the Participant’s permissions.

89

FastRTPS Documentation, Release 1.10.0

You can activate an Access control plugin using Participant property dds.sec.access.plugin. Fast RTPS
provides a built-in Access control plugin. More information on Access:Permissions.

10.3 Cryptographic plugins

They provide encryption support. Encryption can be applied over three different levels of RTPS protocol. Crypto-
graphic plugins can encrypt whole RTPS messages, RTPS submessages of a particular entity (Writer or Reader) or the
payload (user data) of a particular Writer. You can combine them.

You can activate an Cryptographic plugin using Participant property dds.sec.crypto.plugin. Fast RTPS pro-
vides a built-in Cryptographic plugin. More information on Crypto:AES-GCM-GMAC.

The Cryptographic plugin is configured by the Access control plugin. If Access control will not be used, you can
configure the Cryptographic plugin manually with the next properties:

Encrypt whole RTPS messages

You can configure a Participant to encrypt all RTPS messages using Participant property rtps.participant.
rtps_protection_kind with the value ENCRYPT.

Encrypt RTPS submessages of a particular entity

You can configure an entity (Writer or Reader) to encrypt its RTPS submessages using Entity property rtps.
endpoint.submessage_protection_kind with the value ENCRYPT.

Encrypt payload of a particular Writer

You can configure a Writer to encrypt its payload using Writer property rtps.endpoint.
payload_protection_kind with the value ENCRYPT.

10.4 Built-in plugins

The current version comes out with three security built-in plugins:

• Auth:PKI-DH: this plugin provides authentication using a trusted Certificate Authority (CA).

• Access:Permissions: this plugin provides access control to Participants at the Domain and Topic level.

• Crypto:AES-GCM-GMAC: this plugin provides authenticated encryption using Advanced Encryption Standard
(AES) in Galois Counter Mode (AES-GCM).

10.4.1 Auth:PKI-DH

This built-in plugin provides authentication between discovered participants. It is supplied by a trusted Certificate
Authority (CA) and uses ECDSA Digital Signature Algorithms to perform the mutual authentication. It also establishes
a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement Methods. This shared secret can be used
by other security plugins as Crypto:AES-GCM-GMAC.

You can activate this plugin using Participant property dds.sec.auth.plugin with the value builtin.
PKI-DH. Next tables show you the Participant properties used by this security plugin.

90 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

Table 1: Properties to configure Auth:PKI-DH
Property name (all properties have
“dds.sec.auth.builtin.PKI-DH.” pre-
fix)

Property value

identity_ca URI to the X509 certificate of the Identity CA. Supported URI schemes:
file. The file schema shall refer to a X.509 v3 certificate in PEM format.

identity_certificate URI to an X509 certificate signed by the Identity CA in PEM format con-
taining the signed public key for the Participant. Supported URI schemes:
file.

identity_crl (optional) URI to a X509 Certificate Revocation List (CRL). Supported URI
schemes: file.

private_key URI to access the private Private Key for the Participant. Supported URI
schemes: file.

password (optional) A password used to decrypt the private_key.

Generation of x509 certificates

You can generate your own x509 certificates using OpenSSL application. This section teaches you how to do this.

Generate a certificate for the CA

When you want to create your own CA certificate, you first have to write a configuration file with your CA information.

File: maincaconf.cnf
OpenSSL example Certificate Authority configuration file

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = . # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir

certificate = $dir/maincacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/maincakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days= 1825 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = sha256 # which md to use.

(continues on next page)

10.4. Built-in plugins 91

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

preserve = no # keep passed DN ordering

policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
prompt = no
#default_bits = 1024
#default_keyfile = privkey.pem
distinguished_name= req_distinguished_name
#attributes = req_attributes
#x509_extensions = v3_ca # The extentions to add to the self signed cert
string_mask = utf8only

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
0.organizationName = eProsima
commonName = eProsima Main Test CA
emailAddress = mainca@eprosima.com

After writing the configuration file, next commands generate the certificate using ECDSA.

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -x509 -days 3650 -newkey ec:ecdsaparam -keyout maincakey.pem -out
→˓maincacert.pem -config maincaconf.cnf

Generate a certificate for the Participant

When you want to create your own certificate for your Participant, you first have to write a configuration file.

File: appconf.cnf

prompt = no
string_mask = utf8only

(continues on next page)

92 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

distinguished_name = req_distinguished_name

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
organizationName = eProsima
emailAddress = example@eprosima.com
commonName = AppName

After writing the configuration file, next commands generate the certificate, using ECDSA, for your Participant.

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -new -newkey ec:ecdsaparam -config appconf.cnf -keyout appkey.pem -
→˓out appreq.pem

openssl ca -batch -create_serial -config maincaconf.cnf -days 3650 -in appreq.pem -
→˓out appcert.pem

10.4.2 Access:Permissions

This built-in plugin provides access control using a permissions document signed by a shared Certificate Authority. It
is configured with three documents:

You can activate this plugin using Participant property dds.sec.access.plugin with the value builtin.
Access-Permissions. Next table shows the Participant properties used by this security plugin.

Table 2: Properties to configure Access:Permissions
Property name (all properties have
“dds.sec.access.builtin.Access-
Permissions.” prefix)

Property value

permissions_ca URI to the X509 certificate of the Permissions CA. Supported URI
schemes: file. The file schema shall refer to an X.509 v3 certificate
in PEM format.

governance URI to shared Governance Document signed by the Permissions CA
in S/MIME format. Supported URI schemes: file.

permissions URI to the Participant permissions document signed by the Permis-
sions CA in S/MIME format. Supported URI schemes: file.

Permissions CA Certificate

This is an X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain Governance
and Domain Permissions documents.

Domain Governance Document

Domain Governance document is an XML document that specifies how the domain should be secured. It shall be
signed by the Permissions CA in S/MIME format.

The format of this document is defined in this Governance XSD file. You can also find a generic Governance XML
example.

10.4. Built-in plugins 93

https://github.com/eProsima/Fast-RTPS/blob/master/resources/xsd/governance.xsd
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/governance.xml
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/governance.xml

FastRTPS Documentation, Release 1.10.0

Domain Rules

Each domain rule is delimited by the <domain_rule> XML element tag. Each domain rule contains the following
elements and sections:

• Domains element

• Allow Unauthenticated Participants element

• Enable Join Access Control element

• Discovery Protection Kind element

• Liveliness Protection Kind element

• RTPS Protection Kind element

• Topic Access Rules section

The domain rules are evaluated in the same order as they appear in the document. A rule only applies to a particular
Participant if the domain section matches the domain to which the Participant belongs. If multiple rules match, the
first rule that matches is the only one that applies.

Domains element

This element is delimited by the XML element <domains>. The value in this element identifies the collection of
Domains values to which the rule applies.

The <domains> element can contain a single domain identifier, for example:

<domains>
<id>1</id>

</domains>

Or it can contain a range of domain identifiers, for example:

<domains>
<id_range>

<min>1</min>
<max>10</max>

</id_range>
</domains>

Or it can contain both, a list of domain identifiers and ranges of domain identifiers.

Allow Unauthenticated Participants element

This element is delimited by the XML element <allow_unauthenticated_participants>. Indicates
whether the matching of the Participant with a remote Participant requires authentication. If the value is false,
the Participant shall enforce the authentication of remote Participants and disallow matching those that cannot be
successfully authenticated. If the value is true, the Participant shall allow matching other Participants (event if the
remote Participant cannot authenticate) as long as there is not an already valid authentication with the same Partici-
pant’s GUID.

94 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

Enable Join Access Control element

This element is delimited by the XML element <enable_join_access_control>. Indicates whether the
matching of the participant with a remote Participant requires authorization by the Access control plugin. If the
value is false, the Participant shall not check the permissions of the authenticated remote Participant. If the value is
true, the Participant shall check the permissions of the authenticated remote Participant.

Discovery Protection Kind element

This element is delimited by the XML element <discovery_protection_kind>. Indicates whether the secure
channel of the endpoint discovery phase needs to be encrypted. If the value is SIGN or ENCRYPT, the secure channel
shall be encrypted. If the value is NONE, it shall not.

Liveliness Protection Kind element

This element is delimited by the XML element <liveliness_protection_kind>. Indicates whether the se-
cure channel of the liveliness mechanism needs to be encrypted. If the value is SIGN or ENCRYPT, the secure channel
shall be encrypted. If the value is NONE, it shall not.

RTPS Protection Kind element

This element is delimited by the XML element <rtps_protection_kind>. Indicates whether the whole RTPS
Message needs to be encrypted. If the value is SIGN or ENCRYPT, whole RTPS Messages shall be encrypted. If the
value is NONE, it shall not.

Topic Rule Section

This element is delimited by the XML element <topic_rule> and appears within the Topic Access Rules Section
whose XML element is <topic_access_rules>.

Each one contains the following elements:

• Topic expression

• Enable Discovery protection

• Enable Liveliness protection

• Enable Read Access Control element

• Enable Write Access Control element

• Metadata protection Kind

• Data protection Kind

The topic expression selects a set of Topic names. The rule applies to any Publisher or Subscriber associated with a
Topic whose name matches the Topic expression name.

The topic access rules are evaluated in the same order as they appear within the <topic_access_rules> section.
If multiple rules match, the first rule that matches is the only one that applies.

10.4. Built-in plugins 95

FastRTPS Documentation, Release 1.10.0

Topic expression element

This element is delimited by the XML element <topic_expression>. The value in this element identifies the set
of Topic names to which the rule applies. The rule will apply to any Publisher and Subscriber associated with a Topic
whose name matches the value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function
as specified in POSIX 1003.2-1992, Section B.6.

Enable Discovery protection element

This element is delimited by the XML element <enable_discovery_protection>. Indicates whether the
entity related discovery information shall go through the secure channel of endpoint discovery phase. If the value is
false, the entity discovery information shall be sent by an unsecured channel of discovery. If the value is true, the
information shall be sent by the secure channel.

Enable Liveliness Protection element

This element is delimited by the XML element <enable_liveliness_protection>. Indicates whether the
entity related liveliness information shall go through the secure channel of liveliness mechanism. If the value is
false, the entity liveliness information shall be sent by an unsecured channel of liveliness. If the value is true, the
information shall be sent by the secure channel.

Enable Read Access Control element

This element is delimited by the XML element <enable_read_access_control>. Indicates whether read
access to the Topic is protected. If the value is false, then local Subscriber creation and remote Subscriber matching
can proceed without further access-control mechanisms imposed. If the value is true, they shall be checked using
Access control plugin.

Enable Write Access Control element

This element is delimited by the XML element <enable_write_access_control>. Indicates whether write
access to the Topic is protected. If the value is false, then local Publisher creation and remote Publisher matching
can proceed without further access-control mechanisms imposed. If the value is true, they shall be checked using
Access control plugin.

Metadata Protection Kind element

This element is delimited by the XML element <metadata_protection_kind>. Indicates whether the entity’s
RTPS submessages shall be encrypted by the Cryptographic plugin. If the value is true, the RTPS submessages shall
be encrypted. If the value is false, they shall not.

Data Protection Kind element

This element is delimited by the XML element <data_protection_kind>. Indicates whether the data payload
shall be encrypted by the Cryptographic plugin. If the value is true, the data payload shall be encrypted. If the value
is false, the data payload shall not.

96 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

Participant permissions document

The permissions document is an XML document containing the permissions of the Participant and binding them to its
distinguished name. The permissions document shall be signed by the Permissions CA in S/MIME format.

The format of this document is defined in this Permissions XSD file. You can also find a generic Permissions XML
example.

Grant Section

This section is delimited by the <grant> XML element tag. Each grant section contains three sections:

• Subject name

• Validity

• Rules

Subject name

This section is delimited by XML element <subject_name>. The subject name identifies the Participant to which
the permissions apply. Each subject name can only appear in a single <permissions> section within the XML
Permissions document. The contents of the subject name element shall be the x.509 subject name for the Participant
as is given in the Authorization Certificate.

Validity

This section is delimited by the XML element <validity>. It reflects the valid dates for the permissions.

Rules

This section contains the permissions assigned to the Participant. The rules are applied in the same order that appears
in the document. If the criteria for the rule matched the Domain join and/or publish or subscribe operation that is
being attempted, then the allow or deny decision is applied. If the criteria for a rule does not match the operation
being attempted, the evaluation shall proceed to the next rule. If all rules have been examined without a match, then
the decision specified by the <default> rule is applied. The default rule, if present, must appear after all allow and
deny rules. If the default rule is not present, the implied default decision is DENY.

For the grant to match there shall be a match of the topics and partitions criteria.

Allow rules are delimited by the XML element <allow_rule>. Deny rules are delimited by the XML element
<deny_rule>. Both contain the same element children.

Domains Section

This section is delimited by the XML element <domains>. The value in this element identifies the collection of
Domain values to which the rule applies. The syntax is the same as for the Domains element of the Governance
document.

10.4. Built-in plugins 97

https://github.com/eProsima/Fast-RTPS/blob/master/resources/xsd/permissions.xsd
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/permissions.xml
https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/permissions.xml

FastRTPS Documentation, Release 1.10.0

Format of the Allowed/Denied Actions sections

The sections for each of the three action kinds have a similar format. The only difference is the name of the XML
element used to delimit the action:

• The Allow/Deny Publish Action is delimited by the <publish> XML element.

• The Allow/Deny Subscribe Action is delimited by the <subscribe> XML element.

• The Allow/Deny Relay Action is delimited by the <relay> XML element.

Each action contains two conditions.

• Allowed/Denied Topics Condition

• Allowed/Denied Partitions Condition

Topics condition

This section is delimited by the <topics> XML element. It defines the Topic names that must be matched for the
allow/deny rule to apply. Topic names may be given explicitly or by means of Topic name expressions. Each topic
name of topic-name expressions appears separately in a <topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function
as specified in POSIX 1003.1-1992, Section B.6.

<topics>
<topic>Plane</topic>
<topic>Hel*</topic>

</topics>

Partitions condition

This section is delimited by the <partitions> XML element. It limits the set Partitions names that may be
associated with the (publish, subscribe, relay) action for the rule to apply. Partition names expression syntax and
matching shall use the syntax and rules of the POSIX fnmatch() function as specified in POSIX 1003.2-1992,
Section B.6. If there is no <partitions> section within a rule, then the default “empty string” partition is assumed.

<partitions>
<partition>A</partition>
<partition>B*</partition>

</partitions>

Signing documents using x509 certificate

Governance document and Permissions document have to be signed by an X509 certificate. Generation of an X509
certificate is explained in Generation of x509 certificates. Next commands sign the necessary documents for Ac-
cess:Permissions plugin.

Governance document: governance.xml
openssl smime -sign -in governance.xml -text -out governance.smime -signer maincacert.
→˓pem -inkey maincakey.pem

Permissions document: permissions.xml
openssl smime -sign -in permissions.xml -text -out permissions.smime -signer
→˓maincacert.pem -inkey maincakey.pem (continues on next page)

98 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

10.4.3 Crypto:AES-GCM-GMAC

This built-in plugin provides authenticated encryption using AES in Galois Counter Mode (AES-GCM). It also pro-
vides additional reader-specific message authentication codes (MACs) using Galois MAC (AES-GMAC). This plugin
needs the activation of the security plugin Auth:PKI-DH.

You can activate this plugin using Participant property dds.sec.crypto.plugin with the value builtin.
AES-GCM-GMAC.

10.5 Example: configuring the Participant

This example show you how to configure a Participant to activate and configure Auth:PKI-DH, Access:Permissions
and Crypto:AES-GCM-GMAC plugins.

Participant attributes

10.5. Example: configuring the Participant 99

FastRTPS Documentation, Release 1.10.0

C++

eprosima::fastrtps::ParticipantAttributes part_attr;

// Activate Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.plugin", "builtin.
→˓PKI-DH");

// Configure Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_ca", "file://maincacert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_certificate", "file://appcert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓private_key", "file://appkey.pem");

// Activate Access:Permissions plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.plugin",
→˓"builtin.Access-Permissions");

// Configure Access:Permissions plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.builtin.Access-
→˓Permissions.permissions_ca",

"file://maincacet.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.builtin.Access-
→˓Permissions.governance",

"file://governance.smime");
part_attr.rtps.properties.properties().emplace_back("dds.sec.access.builtin.Access-
→˓Permissions.permissions",

"file://permissions.smime");

// Activate Crypto:AES-GCM-GMAC plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.crypto.plugin",
→˓"builtin.AES-GCM-GMAC");

XML

<participant profile_name="secure_participant_conf_all_plugin_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Configure Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
<value>file://maincacert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
<value>file://appcert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.private_key</name>
<value>file://appkey.pem</value>

</property>

<!-- Activate Access:Permissions plugin -->
<property>

<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>

</property>

<!-- Configure Access:Permissions plugin -->
<property>

<name>dds.sec.access.builtin.Access-Permissions.permissions_ca</
→˓name>

<value>file://maincacet.pem</value>
</property>
<property>

<name>dds.sec.access.builtin.Access-Permissions.governance</
→˓name>

<value>file://governance.smime</value>
</property>
<property>

<name>dds.sec.access.builtin.Access-Permissions.permissions</
→˓name>

<value>file://permissions.smime</value>
</property>

<!-- Activate Crypto:AES-GCM-GMAC plugin -->
<property>

<name>dds.sec.crypto.plugin</name>
<value>builtin.AES-GCM-GMAC</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

100 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

This example shows you how to configure a Participant to activate and configure Auth:PKI-DH and Crypto:AES-
GCM-GMAC plugins, without and Access control plugin. It also configures Participant to encrypt its RTPS messages,
Writer and Reader to encrypt their RTPS submessages and a writer to encrypt the payload (user data).

Participant attributes

10.5. Example: configuring the Participant 101

FastRTPS Documentation, Release 1.10.0

C++

eprosima::fastrtps::ParticipantAttributes part_attr;

// Activate Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.plugin", "builtin.
→˓PKI-DH");

// Configure Auth:PKI-DH plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_ca", "file://maincacert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓identity_certificate", "file://appcert.pem");
part_attr.rtps.properties.properties().emplace_back("dds.sec.auth.builtin.PKI-DH.
→˓private_key", "file://appkey.pem");

// Activate Crypto:AES-GCM-GMAC plugin
part_attr.rtps.properties.properties().emplace_back("dds.sec.crypto.plugin",
→˓"builtin.AES-GCM-GMAC");

// Encrypt all RTPS submessages
part_attr.rtps.properties.properties().emplace_back("rtps.participant.rtps_
→˓protection_kind", "ENCRYPT");

XML

<participant profile_name="secure_participant_conf_no_access_control_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Configure Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
<value>file://maincacert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
<value>file://appcert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.private_key</name>
<value>file://appkey.pem</value>

</property>

<!-- Activate Crypto:AES-GCM-GMAC plugin -->
<property>

<name>dds.sec.crypto.plugin</name>
<value>builtin.AES-GCM-GMAC</value>

</property>

<!-- Encrypt all RTPS submessages -->
<property>

<name>rtps.participant.rtps_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

102 Chapter 10. Security

FastRTPS Documentation, Release 1.10.0

Publisher attributes

C++

eprosima::fastrtps::PublisherAttributes pub_attr;

// Encrypt RTPS submessages
pub_attr.properties.properties().emplace_back("rtps.endpoint.submessage_protection_
→˓kind", "ENCRYPT");

// Encrypt payload
pub_attr.properties.properties().emplace_back("rtps.endpoint.payload_protection_kind
→˓", "ENCRYPT");

XML

<publisher profile_name="secure_publisher_xml_profile">
<propertiesPolicy>

<properties>
<!-- Encrypt RTPS submessages -->
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>

<!-- Encrypt payload -->
<property>

<name>rtps.endpoint.payload_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</publisher>

Subscriber attributes

10.5. Example: configuring the Participant 103

FastRTPS Documentation, Release 1.10.0

C++

eprosima::fastrtps::SubscriberAttributes sub_attr;

// Encrypt RTPS submessages
sub_attr.properties.properties().emplace_back("rtps.endpoint.submessage_protection_
→˓kind", "ENCRYPT");

XML

<subscriber profile_name="secure_publisher_xml_profile">
<propertiesPolicy>

<properties>
<!-- Encrypt RTPS submessages -->
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</subscriber>

104 Chapter 10. Security

CHAPTER 11

Real-time behavior

Fast RTPS can be configured to offer real-time features. These features will guarantee Fast RTPS responses within
specified time constrains. To maintain this compromise Fast RTPS is able to have the following behavior:

• Not allocate memory after the initialization of Fast RTPS entities.

• Several methods are blocked for a maximum period of time.

This section explains how to configure Fast RTPS to achieve this behavior. For easier understanding it was divided in
two subsections:

• Tuning allocations: configuration to avoid memory allocation after initialization.

• Non-blocking calls: usage of non-blocking methods for real-time behavior.

11.1 Tuning allocations

Some important non-deterministic operating system calls are the ones for allocating and deallocating memory. Most
real-time systems have the need to operate in a way that all dynamic memory is allocated on the application startup,
and avoid calls to memory management APIs on the main loop.

Fast-RTPS provides some configuration parameters to meet these requirements, allowing the items of internal data
collections to be preallocated. In order to choose the correct values for these parameters, the user should be aware of
the topology of the whole domain, so the number of participants and endpoints should be known when setting them.

11.1.1 Parameters on the participant

All the allocation related parameters on the participant are grouped into the rtps.allocation field of the
ParticipantAttributes struct.

105

FastRTPS Documentation, Release 1.10.0

Limiting the number of discovered participants

Every participant in Fast-RTPS holds an internal collection of ParticipantProxyData ob-
jects with the information of the local and the remote participants. Field participants inside
RTPSParticipantAllocationAttributes allows the configuration of the allocation behavior of that
collection. The user can specify the initial number of elements preallocated, the maximum number of elements
allowed, and the allocation increment. By default, a full dynamic behavior is used.

Limiting the number of discovered endpoints

Every ParticipantProxyData object holds internal collections with the ReaderProxyData and
WriterProxyData objects with the information of the readers and writers of a participant. In a similar way to
the participants field, RTPSParticipantAllocationAttributes has fields readers and writers
to set the configuration of the allocation behavior of those collections. The user can specify the initial number of
elements preallocated, the maximum number of elements allowed, and the allocation increment. By default, a full
dynamic behavior is used.

Limiting the size of parameters

Most of the information held for participants and endpoints have a defined size limit, so the amount of memory to
allocate for each local and remote peer is known. For the parameters which size is not limited, a maximum size can
be configured with RTPSParticipantAllocationAttributes::data_limits, which has the following
attributes:

• max_partitions limits the size of partition data to the given number of octets.

• max_user_data limits the size of user data to the given number of octets.

• max_properties limits the size of participant properties data to the given number of octets.

A value of zero implies no size limitation. If these sizes are configured to something different than zero, enough
memory will be allocated for them for each participant and endpoint. If these sizes are not limited, memory will be
dynamically allocated as needed. By default, a full dynamic behavior is used.

11.1.2 Parameters on the publisher

Every publisher holds a collection with some information regarding the subscribers it has matched to. Field
matched_subscriber_allocation inside PublisherAttributes allows the configuration of the allo-
cation behavior of that collection. The user can specify the initial number of elements preallocated, the maximum
number of elements allowed, and the allocation increment. By default, a full dynamic behavior is used.

11.1.3 Parameters on the subscriber

Every subscriber holds a collection with some information regarding the publishers it has matched to. Field
matched_publisher_allocation inside SubscriberAttributes allows the configuration of the allo-
cation behavior of that collection. The user can specify the initial number of elements preallocated, the maximum
number of elements allowed, and the allocation increment. By default, a full dynamic behavior is used.

11.1.4 Full example

Given a system with the following topology:

106 Chapter 11. Real-time behavior

FastRTPS Documentation, Release 1.10.0

Table 1: Allocation tuning example topology
Participant P1 Participant P2 Participant P3
Topic 1 publisher Topic 1 subscriber Topic 2 subscriber
Topic 1 subscriber Topic 2 publisher
Topic 1 subscriber Topic 2 subscriber

• All the subscribers match exactly with 1 publisher.

• The publisher for topic 1 matches with 3 subscribers, and the publisher for topic 2 matches with 2 subscribers.

• The maximum number of publishers per participant is 1, and the maximum number of subscribers per participant
is 2.

• The total number of participants is 3.

We will also limit the size of the parameters:

• Maximum partition data size: 256

• Maximum user data size: 256

• Maximum properties data size: 512

The following piece of code shows the set of parameters needed for the use case depicted in this example.

11.1. Tuning allocations 107

FastRTPS Documentation, Release 1.10.0

C++

// Before creating a participant:
// We know we have 3 participants on the domain
participant_attr.rtps.allocation.participants =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
// We know we have at most 2 readers on each participant
participant_attr.rtps.allocation.readers =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);
// We know we have at most 1 writer on each participant
participant_attr.rtps.allocation.writers =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);
// We know the maximum size of partition data
participant_attr.rtps.allocation.data_limits.max_partitions = 256u;
// We know the maximum size of user data
participant_attr.rtps.allocation.data_limits.max_user_data = 256u;
// We know the maximum size of properties data
participant_attr.rtps.allocation.data_limits.max_properties = 512u;

// Before creating the publisher for topic 1:
// we know we will only have three matching subscribers
publisher_attr.matched_subscriber_allocation =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);

// Before creating the publisher for topic 2:
// we know we will only have two matching subscribers
publisher_attr.matched_subscriber_allocation =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);

// Before creating a subscriber:
// we know we will only have one matching publisher
subscriber_attr.matched_publisher_allocation =
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

XML

<participant profile_name="participant_alloc_qos_example">
<rtps>

<allocation>
<!-- We know we have 3 participants on the domain -->
<total_participants>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</total_participants>
<!-- We know we have at most 2 readers on each participant -->
<total_readers>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</total_readers>
<!-- We know we have at most 1 writer on each participant -->
<total_writers>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</total_writers>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

</allocation>
</rtps>

</participant>

<publisher profile_name="alloc_qos_example_pub_for_topic_1">
<!-- we know we will have three matching subscribers -->
<matchedSubscribersAllocation>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>
</publisher>

<publisher profile_name="alloc_qos_example_pub_for_topic_2">
<!-- we know we will have two matching subscribers -->
<matchedSubscribersAllocation>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>
</publisher>

<subscriber profile_name="alloc_qos_example_sub">
<!-- we know we will only have one matching publisher -->
<matchedPublishersAllocation>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</matchedPublishersAllocation>
</subscriber>

108 Chapter 11. Real-time behavior

FastRTPS Documentation, Release 1.10.0

11.2 Non-blocking calls

Note: This feature is not fully supported on OSX. It doesn’t support necessary POSIX Real-time features. The feature
is limited by the implementation of std::timed_mutex and std::condition_variable_any.

It is important that a method isn’t blocked for indeterminate time to achieve real-time. A method must only be blocked
for a maximum period of time. In Fast-RTPS API there are several methods that permit to set this. But first Fast-RTPS
should be configured with the CMake option -DSTRICT_REALTIME=ON. The list of these functions is displayed in
the table below.

Table 2: Fast RTPS non-blocking API
Method Description
Publisher::write() These methods are blocked for a period of time. ReliabilityQosPolicy.max_blocking_time

on PublisherAttributes defines this period of time. Default value is 100 milliseconds.
Sub-
scriber::takeNextData()

This methods is blocked for a period of time. ReliabilityQosPolicy.max_blocking_time on
SubscriberAttributes defines this period of time. Default value is 100 milliseconds.

Sub-
scriber::readNextData()

This method is blocked for a period of time. ReliabilityQosPolicy.max_blocking_time on
SubscriberAttributes defines this period of time. Default value is 100 milliseconds.

Sub-
scriber::wait_for_unread_samples()

Accepts an argument specifying how long the method can be blocked.

11.2. Non-blocking calls 109

FastRTPS Documentation, Release 1.10.0

110 Chapter 11. Real-time behavior

CHAPTER 12

Dynamic Topic Types

eProsima Fast RTPS provides a dynamic way to define and use topic types and topic data. Our implementation follows
the OMG Extensible and Dynamic Topic Types for DDS interface. For more information, you can read the document
(DDS-XTypes V1.2) in this link.

The dynamic topic types offer the possibility to work over RTPS without the restrictions related to the IDLs. Us-
ing them the users can declare the different types that they need and manage the information directly, avoiding the
additional step of updating the IDL file and the generation of C++ classes.

The management of dynamic types is split into two main groups. The first one manages the declaration of the types,
building and setting the configuration of every type and the second one is in charge of the data instances and their
information.

12.1 Concepts

Type Descriptor

Stores the information about one type with its relationships and restrictions. It’s the minimum class needed to generate
a Dynamic type and in case of the complex ones, it stores information about its children or its parent types.

Member Descriptor

Several complex types need member descriptors to declare the relationship between types. This class stores informa-
tion about that members like their name, their unique ID, the type that is going to be created and the default value after
the creation. Union types have special fields to identify each member by labels.

Dynamic Type Builder Factory

Singleton class that is in charge of the creation and the management of every DynamicTypes and
DynamicTypeBuilders. It declares methods to create each kind of supported types, making easier the man-
agement of the descriptors. Every object created by the factory must be deleted calling the delete_type method.

Dynamic Type Builder

Intermediate class used to configure and create DynamicTypes. By design Dynamic types can’t be modified, so the
previous step to create a new one is to create a builder and apply the settings that the user needs. Users can create

111

http://www.omg.org/spec/DDS-XTypes/1.2

FastRTPS Documentation, Release 1.10.0

several types using the same builder, but the changes applied to the builder don’t affect to the types created previously.
Every object created by a builder must be deleted calling the delete_type method of the Dynamic Type builder
Factory.

Dynamic Type

Base class in the declaration of Dynamic types, it stores the information about its type and every Member that is related
to it. It creates a copy of the descriptor on its creation and cannot be changed to keep the consistency.

Dynamic Type Member

A class that creates the relationship between a member descriptor with its parent type. Dynamic Types have a one
Dynamic type member for every child member added to it.

Dynamic Data Factory

Singleton class that is in charge of the creation and the management of every DynamicData. It creates them using
the given DynamicType with its settings. Every data object created by the factory must be deleted calling the
delete_type method. Allows creating a TypeIdentifier and a (Minimal and Complete) TypeObject from
a TypeDescriptor.

Dynamic Data

A class that manages the data of the Dynamic Types. It stores the information that is sent and received.
There are two ways to work with DynamicDatas, the first one is the most secured, activating the macro
DYNAMIC_TYPES_CHECKING, it creates a variable for each primitive kind to help the debug process. The sec-
ond one reduces the size of the DynamicData class using only the minimum values and making the code harder to
debug.

Dynamic PubSubType

A class that inherits from TopicDataType and works as an intermediary between RTPS Domain and the Dynamic
Types. It implements the methods needed to create, serialize, deserialize and delete DynamicData instances when
the participants need to convert the received information from any transport to the registered dynamic type.

12.2 Supported Types

12.2.1 Primitive Types

This section includes every simple kind:

BOOLEAN INT64
BYTE UINT16
CHAR8 UINT32
CHAR16 UINT64
INT16 FLOAT32
INT32 FLOAT64
FLOAT128

Primitive types don’t need a specific configuration to create the type. Because of that
DynamicTypeBuilderFactory has got exposed several methods to allow users to create the Dynamic
Types avoiding the DynamicTypeBuilder step. The example below shows the two ways to create dynamic data
of a primitive type. The DynamicData class has a specific get and set Methods for each primitive type of the list.

112 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_builder();
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_int32_value(1);

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_int32_value(1);

12.2.2 String and WString

Strings are pretty similar to primitive types with one exception, they need to set the size of the buffer that they
can manage. To do that, DynamicTypeBuilderFactory exposes the methods create_string_type and
create_wstring_type. By default, its size is set to 255 characters.

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_string_value("Dynamic String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_string_value("Dynamic String");

12.2.3 Alias

Alias types have been implemented to rename an existing type, keeping the rest of properties of the given type.
DynamicTypeBuilderFactory exposes the method create_alias_type to create alias types taking the
base type and the new name that the alias is going to set. After the creation of the DynamicData, users can access
its information like they were working with the base type.

// Using Builders
DynamicTypeBuilder_ptr base_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(base_builder.get());
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(created_type, "alias");
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder.get());
data->set_string_value("Dynamic Alias String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);

(continues on next page)

12.2. Supported Types 113

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pType, "alias");
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pAliasType);
data2->set_string_value("Dynamic Alias String");

12.2.4 Enumeration

The enum type is managed as complex in Dynamic Types because it allows adding members to set the different values
that the enum is going to manage. Internally, it works with a UINT32 to store what value is selected.

To use enumerations users must create a Dynamic Type builder calling to create_enum_type and after that, they
can call to add_member given the index and the name of the different values that the enum is going to support.

The DynamicData class has got methods get_enum_value and set_enum_value to work with UINT32 or
with strings using the names of the members added to the builder.

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓enum_builder();
builder->add_empty_member(0, "DEFAULT");
builder->add_empty_member(1, "FIRST");
builder->add_empty_member(2, "SECOND");
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(pType);

std::string sValue = "SECOND";
data->set_enum_value(sValue);
uint32_t uValue = 2;
data->set_enum_value(uValue);

12.2.5 Bitset

Bitset types are similar to structure types but their members are only bitfields, which are stored optimally. In the static
version of bitsets, each bit uses just one bit in memory (with platform limitations) without alignment considerations.
A bitfield can be anonymous (cannot be addressed) to skip unused bits within a bitset. Each bitfield in a bitset can be
modified through their minimal needed primitive representation.

Number of bits Primitive
1 BOOLEAN
2-8 UINT8
9-16 UINT16
17-32 UINT32
33-64 UINT64

Each bitfield (or member) works like its primitive type with the only difference that the internal storage only modifies
the involved bits instead of the full primitive value.

Bit_bound and position of the bitfield can be set using annotations (useful when converting between static and dynamic
bitsets).

// Create bitfields
DynamicTypeBuilder_ptr base_type_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_byte_builder();

(continues on next page)

114 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

auto base_type = base_type_builder->build();

DynamicTypeBuilder_ptr base_type_builder2 = DynamicTypeBuilderFactory::get_instance()-
→˓>create_uint32_builder();
auto base_type2 = base_type_builder2->build();

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓bitset_builder();
builder->add_member(0, "int2", base_type);
builder->add_member(1, "int20", base_type2);
// Apply members' annotations
builder->apply_annotation_to_member(0, ANNOTATION_BIT_BOUND_ID, "value", "2");
builder->apply_annotation_to_member(0, ANNOTATION_POSITION_ID, "value", "0");
builder->apply_annotation_to_member(1, ANNOTATION_BIT_BOUND_ID, "value", "20");
builder->apply_annotation_to_member(1, ANNOTATION_POSITION_ID, "value", "10"); // 8
→˓bits empty
DynamicType_ptr pType(DynamicTypeBuilderFactory::get_instance()->create_type(builder.
→˓get()));
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(pType));
data->set_byte_value(234, 0);
data->set_uint32_value(2340, 1);
octet bValue;
uint32_t uValue;
data->get_byte_value(bValue, 0);
data->get_uint32_value(uValue, 1);

Bitsets allows inheritance, exactly with the same OOP meaning. To inherit from another bitset, we must create the
bitset calling the create_child_struct_builder of the factory. This method is shared with structures and
will deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.

→˓get());

12.2.6 Bitmask

Bitmasks are similar to enumeration types, but their members work as bit flags that can be individually turned on and
off. Bit operations can be applied when testing or setting a bitmask value. DynamicData has the special methods
get_bitmask_value and set_bitmask_value which allow to retrieve or modify the full value instead of
accessing each bit.

Bitmasks can be bound to any number of bits up to 64.

uint32_t limit = 5; // Stores as "octet"

// Using Builders
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓bitmask_builder(limit);
builder->add_empty_member(0, "FIRST");
builder->add_empty_member(1, "SECOND");
DynamicType_ptr pType(DynamicTypeBuilderFactory::get_instance()->create_type(builder.
→˓get()));
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(pType));
data->set_bool_value(true, 2);
bool bValue;

(continues on next page)

12.2. Supported Types 115

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

data->get_bool_value(bValue, 0);
uint64_t fullValue;
data->get_bitmask_value(fullValue);

12.2.7 Structure

Structures are the common complex types, they allow to add any kind of members inside them. They don’t have any
value, they are only used to contain other types.

To manage the types inside the structure, users can call the get and set methods according to the kind of the type
inside the structure using their ids. If the structure contains a complex value, it should be used with loan_value
to access to it and return_loaned_value to release that pointer. DynamicData manages the counter of loaned
values and users can’t loan a value that has been loaned previously without calling return_loaned_value before.

The Ids must be consecutive starting by zero, and the DynamicType will change that Id if it doesn’t match with the
next value. If two members have the same Id, after adding the second one, the previous will change its id to the next
value. To get the id of a member by name, DynamicData exposes the method get_member_id_by_name.

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());

DynamicType_ptr struct_type(builder->build());
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(struct_type));

data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);

Structures allow inheritance, exactly with the same OOP meaning. To inherit from another structure, we must create
the structure calling the create_child_struct_builder of the factory. This method is shared with bitsets and
will deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.

→˓get());

12.2.8 Union

Unions are a special kind of structures where only one of the members is active at the same time. To control these
members, users must set the discriminator type that is going to be used to select the current member calling the
create_union_type method. After the creation of the Dynamic Type, every member that is going to be added
needs at least one union_case_index to set how it is going to be selected and optionally if it is the default value
of the union.

DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓union_builder(discriminator);

builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type(), "", { 0 }, true); (continues on next page)

116 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

builder->add_member(0, "second", DynamicTypeBuilderFactory::get_instance()->create_
→˓int64_type(), "", { 1 }, false);
DynamicType_ptr union_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(union_type));

data->set_int32_value(9, 0);
data->set_int64_value(13, 1);
uint64_t unionLabel;
data->get_union_label(unionLabel);

12.2.9 Sequence

A complex type that manages its members as a list of items allowing users to insert, remove or access to a member of
the list. To create this type users need to specify the type that it is going to store and optionally the size limit of the list.
To ease the memory management of this type, DynamicData has these methods: - insert_sequence_data:
Creates a new element at the end of the list and returns the id of the new element. - remove_sequence_data:
Removes the element of the given index and refresh the ids to keep the consistency of the list. - clear_data:
Removes all the elements of the list.

uint32_t length = 2;

DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓sequence_builder(base_type, length);
DynamicType_ptr sequence_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(sequence_type));

MemberId newId, newId2;
data->insert_int32_value(10, newId);
data->insert_int32_value(12, newId2);
data->remove_sequence_data(newId);

12.2.10 Array

Arrays are pretty similar to sequences with two main differences. The first one is that they can have multiple dimen-
sions and the other one is that they don’t need that the elements are stored consecutively. The method to create arrays
needs a vector of sizes to set how many dimensions are going to be managed, if users don’t want to set a limit can set the
value as zero on each dimension and it applies the default value (100). To ease the management of arrays every set
method in DynamicData class creates the item if there isn’t any in the given Id. Arrays also have methods to handle
the creation and deletion of elements like sequences, they are insert_array_data, remove_array_data and
clear_data. Additionally, there is a special method get_array_index that returns the position id giving a
vector of indexes on every dimension that the arrays support, that is useful in multidimensional arrays.

std::vector<uint32_t> lengths = { 2, 2 };

DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓array_builder(base_type, lengths);
DynamicType_ptr array_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(array_type));

(continues on next page)

12.2. Supported Types 117

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

MemberId pos = data->get_array_index({1, 0});
data->set_int32_value(11, pos);
data->set_int32_value(27, pos + 1);
data->clear_array_data(pos);

12.2.11 Map

Maps contain a list of pairs ‘key-value’ types, allowing users to insert, remove or modify the element types of the map.
The main difference with sequences is that the map works with pairs of elements and creates copies of the key element
to block the access to these elements.

To create a map, users must set the types of the key and the value elements and optionally the size limit of the map. To
add a new element to the map, DynamicData has the method insert_map_data that returns the ids of the key
and the value elements inside the map. To remove an element of the map there is the method remove_map_data
that uses the given id to find the key element and removes the key and the value elements from the map. The method
clear_data removes all the elements from the map.

uint32_t length = 2;

DynamicType_ptr base = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓map_builder(base, base, length);
DynamicType_ptr map_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(map_type));

DynamicData_ptr key(DynamicDataFactory::get_instance()->create_data(base));
MemberId keyId;
MemberId valueId;
data->insert_map_data(key.get(), keyId, valueId);
MemberId keyId2;
MemberId valueId2;
key->set_int32_value(2);
data->insert_map_data(key.get(), keyId2, valueId2);

data->set_int32_value(53, valueId2);

data->remove_map_data(keyId);
data->remove_map_data(keyId2);

12.3 Complex examples

12.3.1 Nested structures

Structures allow to add other structures inside them, but users must take care that to access to these members they need
to call loan_value to get a pointer to the data and release it calling return_loaned_value. DynamicDatas
manages the counter of loaned values and users can’t loan a value that has been loaned previously without calling
return_loaned_value before.

118 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());
DynamicType_ptr struct_type = builder->build();

DynamicTypeBuilder_ptr parent_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder();
parent_builder->add_member(0, "child_struct", struct_type);
parent_builder->add_member(1, "second", DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_type());
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(parent_builder.
→˓get()));

DynamicData* child_data = data->loan_value(0);
child_data->set_int32_value(5, 0);
child_data->set_uint64_value(13, 1);
data->return_loaned_value(child_data);

12.3.2 Structures inheritance

Structures can inherit from other structures. To do that DynamicTypeBuilderFactory has the method
create_child_struct_type that relates the given struct type with the new one. The resultant type contains the
members of the base class and the ones that users have added to it.

Structures support several levels of inheritance, creating recursively the members of all the types in the hierarchy of
the struct.

DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());

DynamicTypeBuilder_ptr child_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_child_struct_builder(builder.get());
builder->add_member(2, "third", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());

DynamicType_ptr struct_type = child_builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(struct_type));

data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);
data->set_uint64_value(47, 2);

12.3.3 Alias of an alias

Alias types support recursion, so if users need to create an alias of another alias, it can be done calling
create_alias_type method giving the alias as a base type.

12.3. Complex examples 119

FastRTPS Documentation, Release 1.10.0

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(created_builder.get(), "alias");
DynamicTypeBuilder_ptr builder2 = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(builder.get(), "alias2");
DynamicData* data(DynamicDataFactory::get_instance()->create_data(builder2->build()));
data->set_string_value("Dynamic Alias 2 String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);
DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pType, "alias");
DynamicType_ptr pAliasType2 = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pAliasType, "alias2");
DynamicData* data2(DynamicDataFactory::get_instance()->create_data(pAliasType));
data2->set_string_value("Dynamic Alias 2 String");

12.3.4 Unions with complex types

Unions support complex types, the available interface to access to them is calling loan_value to get a pointer to
the data and set this field as the active one and release it calling return_loaned_value.

DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓union_builder(discriminator);
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type(), "", { 0 }, true);

DynamicTypeBuilder_ptr struct_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder();
struct_builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_type());
struct_builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->
→˓create_uint64_type());
builder->add_member(1, "first", struct_builder.get(), "", { 1 }, false);

DynamicType_ptr union_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(union_type));

DynamicData* child_data = data->loan_value(1);
child_data->set_int32_value(9, 0);
child_data->set_int64_value(13, 1);
data->return_loaned_value(child_data);

12.3.5 Annotations

DynamicTypeBuilder allows applying an annotation to both current type and inner members with the methods:

• apply_annotation

120 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

• apply_annotation_to_member

apply_annotation_to_member receives the MemberId to apply plus the same parameters than
apply_annotation. The common parameters are the name of the annotation, the key and the value.

For example, if we define an annotation like:

@annotation MyAnnotation
{

long value;
string name;

};

And then we apply it through IDL to a struct:

@MyAnnotation(5, "length")
struct MyStruct
{
...

The equivalent code using DynamicTypes will be:

// Apply the annotation
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
//...
builder->apply_annotation("MyAnnotation", "value", "5");
builder->apply_annotation("MyAnnotation", "name", "length");

Builtin annotations

The following annotations modifies the behavior of DynamicTypes:

• @position: When applied to Bitmask, sets the position of the flag, as expected in the IDL annotation.
If applied to Bitset, sets the base position of the bitfield, useful to identify unassigned bits.

• @bit_bound: Applies to Bitset. Sets the size in bits of the bitfield.

• @key: Alias for @Key. See Topics and Keys section for more details.

• @default: Sets a default value for the member.

• @non_serialized: Excludes a member from being serialized.

12.4 Serialization

Dynamic Types have their own pubsub type like any class generated with an IDL, and their management is pretty
similar to them.

DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicPubSubType pubsubType(pType);

// SERIALIZATION EXAMPLE
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);
uint32_t payloadSize = static_cast<uint32_t>(pubsubType.
→˓getSerializedSizeProvider(data)());

(continues on next page)

12.4. Serialization 121

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

SerializedPayload_t payload(payloadSize);
pubsubType.serialize(data, &payload);

// DESERIALIZATION EXAMPLE
types::DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
pubsubType.deserialize(&payload, data2);

A member can be marked to be ignored by serialization with the annotation @non_serialized.

12.5 Important Notes

The most important part of Dynamic Types is memory management because every dynamic type and dynamic data
are managed with pointers. Every object stored inside of other dynamic object is managed by its owner, so users only
must take care of the objects that they have created calling to the factories. These two factories in charge to manage
these objects, and they must create and delete every object.

DynamicTypeBuilder* pBuilder = DynamicTypeBuilderFactory::get_instance()->create_
→˓uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);

DynamicTypeBuilderFactory::get_instance()->delete_builder(pBuilder);
DynamicDataFactory::get_instance()->delete_data(pData);

To ease this management, the library incorporates a special kind of shared pointers to call to the factories to delete
the object directly (DynamicTypeBuilder_ptr and DynamicData_ptr). The only restriction on using this
kind of pointers are the methods loan_value and return_loaned_value, because they return a pointer to
an object that is already managed by the library and using a DynamicData_ptr with them will cause a crash.
DynamicType will always be returned as DynamicType_ptr because there is no internal management of its
memory.

DynamicTypeBuilder_ptr pBuilder = DynamicTypeBuilderFactory::get_instance()->create_
→˓uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicData_ptr pData(DynamicDataFactory::get_instance()->create_data(pType));

12.6 Dynamic Types Discovery and Endpoint Matching

When using Dynamic Types support, Fast RTPS make use of an optional TypeObjectV1 and TypeIdV1. At its
current state, the matching will only verify that both endpoints are using the same topic type, but will not negotiate
about it.

This verification is done by TypeIdentifier, then MinimalTypeObject, and finally
CompleteTypeObject.

If one endpoints uses a CompleteTypeObject instead, it makes possible Discovery-Time Data Typing.

122 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

12.6.1 TypeObject (TypeObjectV1)

There are two kinds of TypeObject: MinimalTypeObject and CompleteTypeObject.

• MinimalTypeObject is used to check compatibility between types.

• CompleteTypeObject fully describes the type.

Both are defined in the annexes of DDS-XTypes V1.2 document so its details will not be covered in this document.

• TypeObject is an IDL union with both representation, Minimal and Complete.

12.6.2 TypeIdentifier (TypeIdV1)

TypeIdentifier is described too in the annexes of DDS-XTypes V1.2 document. It represents a full description of
basic types and has an EquivalenceKind for complex ones. An EquivalenceKind is a hash code of 14 octets,
as described by the DDS-XTypes V1.2 document.

12.6.3 TypeObjectFactory

Singleton class that manages the creation and access for all registered TypeObjects and TypeIdentifiers.
From a basic TypeIdentifier (in other words, a TypeIdentifier whose discriminator isn’t EK_MINIMAL
or EK_COMPLETE) can generate a full DynamicType.

12.6.4 Fastrtpsgen

FastRTPSGen has been upgraded to generate XXXTypeObject.h and XXXTypeObject.cxx files, taking XXX
as our IDL type. These files provide a small Type Factory for the type XXX. Generally, these files are not used directly,
as now the type XXX will register itself through its factory to TypeObjectFactory in its constructor, making very
easy the use of static types with dynamic types.

12.6.5 Discovery-Time Data Typing

When using fastdds API, if a participant discovers an endpoint which sends a complete TypeObject or a sim-
ple TypeIdentifier describing a type that the participant doesn’t know, Fast RTPS will call to the participant lis-
tener’s method on_type_discovery with the TypeObject and TypeIdentifier provided, and, when possible, a
DynamicType_ptr ready to be used. Discovery-Time Data Typing allows the discovering of simple Dynamic-
Types. A TypeObject that depends on other TypeObjects, cannot be built locally using Discovery-Time Data Typing
and should use TypeLookup Service instead.

To ease the sharing of the TypeObject and TypeIdentifier used by Discovery-Time Data Typing, there exists an attribute
in TopicAttributes named auto_fill_type_object. If set to true, on discovery time, the local participant
will try to fill type and type_id fields in the correspond ReaderProxyData or WriterProxyData to be sent
to the remote endpoint.

12.6.6 TypeLookup Service

When using fastdds API, if a participant discovers an endpoint which sends a TypeInformation describ-
ing a type that the participant doesn’t know, Fast RTPS will call to the participant listener’s method
on_type_information_received with the TypeInformation provided. Then the user can try to retrieve the
full TypeObject hierarchy to build the remote type locally, using the TypeLookup Service.

To enable this builtin TypeLookup Service, the user must enable it in the Participant’s RTPS builtin attributes:

12.6. Dynamic Types Discovery and Endpoint Matching 123

FastRTPS Documentation, Release 1.10.0

participant_attr.rtps.builtin.typelookup_config.use_client = true;
participant_attr.rtps.builtin.typelookup_config.use_server = true;

A participant can be enabled to act as a TypeLookup server, client, or both.

To ease the recovery and registration of a remote type when received its TypeInformation from the remote endpoint, the
DomainParticipant provides the register_remote_type function that internally uses the TypeLookup Service.

On success, this function will call a function received as parameter with the signature:

void(std::string& type_name, const DynamicType_ptr type)

• type_name: Is the given type’s name to the register_remote_type function, to allow multiple calls
using the same
function.

• type: When possible, the function will be called with an already built DynamicType. If wasn’t possible, it will
be
nullptr. In that case, the user can try to build the type by himself using the factories, but it is very
likely that the build process will fail.

To ease the sharing of the TypeInformation used by the TypeLookup Service, there exists an attribute in
TopicAttributes named auto_fill_type_information. If set to true, on discovery time, the local par-
ticipant will try to fill type_information field in the correspond ReaderProxyData or WriterProxyData
to be sent to the remote endpoint.

12.7 XML Dynamic Types

XML Dynamic Types allows eProsima Fast RTPS to create Dynamic Types directly defining them through XML. This
allows any application to change TopicDataTypes without the need to change its source code.

12.8 Dynamic HelloWorld Examples

12.8.1 DynamicHelloWorldExample

Using some of the functionality described in this document, there exists an example at the examples/C++/
DynamicHelloWorldExample folder named DynamicHelloWorldExample that uses DynamicType gen-
eration to provide the TopicDataType.

This example is compatible with classic HelloWorldExample.

As a quick reference, it is shown how the HelloWorld type is created using DynamicTypes:

// In HelloWorldPublisher.h
// Dynamic Types
eprosima::fastrtps::types::DynamicData* m_DynHello;
eprosima::fastrtps::types::DynamicPubSubType m_DynType;

// In HelloWorldPublisher.cpp
// Create basic builders
DynamicTypeBuilder_ptr struct_type_builder(DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder());

(continues on next page)

124 Chapter 12. Dynamic Topic Types

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

// Add members to the struct.
struct_type_builder->add_member(0, "index", DynamicTypeBuilderFactory::get_instance()-
→˓>create_uint32_type());
struct_type_builder->add_member(1, "message", DynamicTypeBuilderFactory::get_
→˓instance()->create_string_type());
struct_type_builder->set_name("HelloWorld");

DynamicType_ptr dynType = struct_type_builder->build();
m_DynType.SetDynamicType(dynType);
m_DynHello = DynamicDataFactory::get_instance()->create_data(dynType);
m_DynHello->set_uint32_value(0, 0);
m_DynHello->set_string_value("HelloWorld", 1);

12.8.2 DDSDynamicHelloWorldExample

Another example located in the examples/C++/DDS/DynamicHelloWorldExample folder shows a publisher
that shares a type loaded from an XML file, and a subscriber that discovers the type using discovery-time-data-typing,
showing the received data after introspecting it.

12.8.3 TypeLookupService

Finally, an example making use of TypeLookup Service can be found int he examples/C++/DDS/
TypeLookupService folder. It’s very similar to DDSDynamicHelloWorldExample, but the shared type is complex
enough to make require the usage of the TypeLookup Service due to the dependency of inner struct types.

12.8. Dynamic HelloWorld Examples 125

FastRTPS Documentation, Release 1.10.0

126 Chapter 12. Dynamic Topic Types

CHAPTER 13

Persistence

By default, the writer’s history is available for remote readers throughout writer’s life. You can configure Fast RTPS
to provide persistence between application executions. When a writer is created again, it will maintain the previous
history and a new remote reader will receive all samples sent by the writer throughout its life.

A reader keeps information on the latest change notified to the user for each matching writer. Persisting this informa-
tion, you could save bandwidth, as the reader will not ask the writers for changes already notified.

In summary, enabling this feature you will protect the state of endpoints against unexpected failures, as they will
continue communicating after being restarted as if they were just disconnected from the network.

Imagine, for instance, that a writer with a policy to keep its last 100 samples has its history full of changes and the
machine where it runs has a power failure. When the writer is started again, if a new reader is created, it will not
receive the 100 samples that were on the history of the writer. With persistence enabled, changes in the history of the
writer will be written to disk and read again when the writer is restarted.

With readers, the information written to disk is different. Only information about the last change notified to the user
is stored on disk. When a persistent reader is restarted, it will load this information, and will only ask the matching
writers to resend those changes that were not notified to the upper layers.

persistence_guid

Whenever an endpoint (reader or writer) is created, a unique identifier (GUID) is generated. If the
endpoint is restarted, a new GUID will be generated, and other endpoints won’t be able to know it
was the same one. For this reason, a specific parameter persistence_guid should be configured on
eprosima::fastrtps::rtps::EndpointAttributes. This parameter will be used as the primary key
of the data saved on disk, and will also be used to identify the endpoint on the DDS domain.

13.1 Configuration

We recommend you to look at the example of how to use this feature the distribution comes with while reading this
section. It is located in examples/RTPSTest_persistent

In order for the persistence feature to work, some specific eprosima::fastrtps::rtps::Writer or
eprosima::fastrtps::rtps::Reader attributes should be set:

127

FastRTPS Documentation, Release 1.10.0

• durabilityKind should be set to TRANSIENT

• persistence_guid should not be all zeros

• A persistence plugin should be configured either on the eprosima::fastrtps::rtps::Writer, the
eprosima::fastrtps::rtps::Reader or the eprosima::fastrtps::rtps::RTPSParticipant

You can select and configure the persistence plugin through eprosima::fastrtps::rtps::RTPSParticipant
attributes using properties. A eprosima::fastrtps::rtps::Property is defined by its name
(std::string) and its value (std::string). Throughout this page, there are tables showing you the
properties used by each persistence plugin.

13.2 Built-in plugins

The current version comes out with one persistence built-in plugin:

• SQLITE3: this plugin provides persistence on a local file using SQLite3 API.

13.2.1 PERSISTENCE:SQLITE3

This built-in plugin provides persistence on a local file using SQLite3 API.

You can activate this plugin using RTPSParticipant, Reader or Writer property dds.persistence.plugin with
the value builtin.SQLITE3. Next table shows you the properties used by this persistence plugin.

Table 1: Properties to configure Persistence::SQLITE3
Property name (all properties have
“dds.persistence.sqlite3.” prefix)

Property value

filename Name of the file used for persistent storage. Default
value: persistence.db

Note: Currently this plugin doesn’t support two processes accessing the same SQLite3 file. It could end up in incon-
sistency and a failure. Be sure each process uses a different SQLite3 file.

13.2.2 Example

This example shows you how to configure an RTPSParticipant to activate and configure PERSISTENCE:SQLITE3
plugin. It also configures a Writer to persist its history on local storage, and a Reader to persist the highest notified
sequence number on local storage.

RTPSParticipant attributes

eprosima::fastrtps::rtps::RTPSParticipantAttributes part_attr;

// Activate Persistence:SQLITE3 plugin
part_attr.properties.properties().emplace_back("dds.persistence.plugin", "builtin.
→˓SQLITE3");

// Configure Persistence:SQLITE3 plugin
part_attr.properties.properties().emplace_back("dds.persistence.sqlite3.filename",
→˓"example.db");

Writer attributes

128 Chapter 13. Persistence

FastRTPS Documentation, Release 1.10.0

eprosima::fastrtps::rtps::WriterAttributes writer_attr;

// Set durability to TRANSIENT
writer_attr.endpoint.durabilityKind = TRANSIENT;

// Set persistence_guid
writer_attr.endpoint.persistence_guid.guidPrefix.value[11] = 1;
writer_attr.endpoint.persistence_guid.entityId = 0x12345678;

Reader attributes

eprosima::fastrtps::rtps::ReaderAttributes reader_attr;

// Set durability to TRANSIENT
reader_attr.endpoint.durabilityKind = TRANSIENT;

// Set persistence_guid
reader_attr.endpoint.persistence_guid.guidPrefix.value[11] = 1;
reader_attr.endpoint.persistence_guid.entityId = 0x3456789A;

13.2. Built-in plugins 129

FastRTPS Documentation, Release 1.10.0

130 Chapter 13. Persistence

CHAPTER 14

XML profiles

The Configuration section shows how to configure entity attributes using XML profiles, but this section goes deeper
on it, explaining each field with its available values and how to compound the complete XML files.

eProsima Fast RTPS permits to load several XML files, each one containing XML profiles. In addition to the API
functions to load user XML files, at initialization eProsima Fast RTPS tries to locate and load several default XML
files. eProsima Fast RTPS offers the following options to use default XML files:

• Using an XML file with the name DEFAULT_FASTRTPS_PROFILES.xml and located in the current execution
path.

• Using an XML file which location is defined in the environment variable FAS-
TRTPS_DEFAULT_PROFILES_FILE.

An XML profile is defined by a unique name (or <transport_id> label in the Transport descriptors case) that is
used to reference the XML profile during the creation of a Fast RTPS entity, Transports, or Dynamic Topic Types.

14.1 Making an XML

An XML file can contain several XML profiles. The available profile types are Transport descriptors, XML Dynamic
Types, Participant profiles, Publisher profiles, and Subscriber profiles.

<transport_descriptor>
<transport_id>TransportProfile</transport_id>
<type>UDPv4</type>
<!-- ... -->

</transport_descriptor>

<types>
<type>

<struct name="struct_profile">
<!-- ... -->

</struct>
</type>

(continues on next page)

131

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

</types>

<participant profile_name="participant_profile">
<rtps>
<!-- ... -->
</rtps>

</participant>

<publisher profile_name="publisher_profile">
<!-- ... -->

</publisher>

<subscriber profile_name="subscriber_profile">
<!-- ... -->

</subscriber>

The Fast-RTPS XML format uses some structures along several profiles types. For readability, the Common section
groups these common structures.

Finally, The Example section shows an XML file that uses all the possibilities. This example is useful as a quick
reference to look for a particular property and how to use it. This XSD file can be used as a quick reference too.

14.1.1 Loading and applying profiles

Before creating any entity, it’s required to load XML files using Domain::loadXMLProfilesFile function.
createParticipant, createPublisher and createSubscriber have a version that expects the profile
name as an argument. eProsima Fast RTPS searches the XML profile using this profile name and applies the XML
profile to the entity.

eprosima::fastrtps::Domain::loadXMLProfilesFile("my_profiles.xml");

Participant *participant = Domain::createParticipant("participant_xml_profile");
Publisher *publisher = Domain::createPublisher(participant, "publisher_xml_profile");
Subscriber *subscriber = Domain::createSubscriber(participant, "subscriber_xml_profile
→˓");

To load dynamic types from its declaration through XML see the Usage section of XML Dynamic Types.

14.2 Library settings

This section is devoted to general settings that are not constraint to specific entities (like participants, subscribers,
publishers) or functionality (like transports or types). All of them are gathered under the library_settings
profile.

<library_settings>
<intraprocess_delivery>FULL</intraprocess_delivery> <!-- OFF | USER_DATA_ONLY

→˓| FULL -->
</library_settings>

Currently only the Intra-process delivery feature is comprised here.

132 Chapter 14. XML profiles

https://github.com/eProsima/Fast-RTPS/blob/master/resources/xsd/fastRTPS_profiles.xsd

FastRTPS Documentation, Release 1.10.0

14.3 Transport descriptors

This section allows creating transport descriptors to be referenced by the Participant profiles. Once a well-defined
transport descriptor is referenced by a Participant profile, every time that profile is instantiated it will use or create
the related transport.

The following XML code shows the complete list of configurable parameters:

<transport_descriptors>
<transport_descriptor>

<transport_id>TransportId1</transport_id> <!-- string -->
<type>UDPv4</type> <!-- string -->
<sendBufferSize>8192</sendBufferSize> <!-- uint32 -->
<receiveBufferSize>8192</receiveBufferSize> <!-- uint32 -->
<TTL>250</TTL> <!-- uint8 -->
<non_blocking_send>false</non_blocking_send> <!-- boolean -->
<maxMessageSize>16384</maxMessageSize> <!-- uint32 -->
<maxInitialPeersRange>100</maxInitialPeersRange> <!-- uint32 -->
<interfaceWhiteList>

<address>192.168.1.41</address> <!-- string -->
<address>127.0.0.1</address> <!-- string -->

</interfaceWhiteList>
<wan_addr>80.80.55.44</wan_addr> <!-- string -->
<output_port>5101</output_port> <!-- uint16 -->
<keep_alive_frequency_ms>5000</keep_alive_frequency_ms> <!-- uint32 -->
<keep_alive_timeout_ms>25000</keep_alive_timeout_ms> <!-- uint32 -->
<max_logical_port>9000</max_logical_port> <!-- uint16 -->
<logical_port_range>100</logical_port_range> <!-- uint16 -->
<logical_port_increment>2</logical_port_increment> <!-- uint16 -->
<listening_ports>

<port>5100</port> <!-- uint16 -->
<port>5200</port> <!-- uint16 -->

</listening_ports>
<calculate_crc>false</calculate_crc> <!-- boolean -->
<check_crc>false</check_crc> <!-- boolean -->
<enable_tcp_nodelay>false</enable_tcp_nodelay> <!-- boolean -->
<tls><!-- TLS Section --></tls>

</transport_descriptor>

The XML label <transport_descriptors> can hold any number of <transport_descriptor>.

14.3. Transport descriptors 133

FastRTPS Documentation, Release 1.10.0

Name Description Values De-
fault

<transport_id>Unique name to identify each transport descriptor. string
<type> Type of the transport descriptor. UDPv4, UDPv6,

TCPv4, TCPv6,
SHM

UDPv4

<sendBufferSize>Size in bytes of the socket send buffer. If the value is zero then
FastRTPS will use the default size from the configuration of the
sockets, using a minimum size of 65536 bytes.

uint32 0

<receiveBufferSize>Size in bytes of the socket receive buffer. If the value is zero then
FastRTPS will use the default size from the configuration of the
sockets, using a minimum size of 65536 bytes.

uint32 0

<TTL> Time To Live, only for UDP transports . uint8 1
<non_blocking_send>Whether to set the non-blocking send mode on the socket bool false
<maxMessageSize>The maximum size in bytes of the transport’s message buffer. uint32 65500
<maxInitialPeersRange>The maximum number of guessed initial peers to try to connect. uint32 4
<interfaceWhiteList>Allows defining Whitelist Interfaces. Whitelist Inter-

faces
<wan_addr> Public WAN address when using TCPv4 transports. This field is

optional if the transport doesn’t need to define a WAN address.
string with IPv4
Format
XXX.XXX.XXX.
XXX.

<output_port>Port used for output bound. If this field isn’t defined, the output port
will be random (UDP only).

uint16 0

<keep_alive_frequency_ms>Frequency in milliseconds for sending RTCP keep-alive requests
(TCP only).

uint32 50000

<keep_alive_timeout_ms>Time in milliseconds since sending the last keep-alive request to
consider a connection as broken. (TCP only).

uint32 10000

<max_logical_port>The maximum number of logical ports to try during RTCP negotia-
tions. (TCP only)

uint16 100

<logical_port_range>The maximum number of logical ports per request to try during
RTCP negotiations. (TCP only)

uint16 20

<logical_port_increment>Increment between logical ports to try during RTCP negotiation.
(TCP only)

uint16 2

<listening_ports>Local port to work as TCP acceptor for input connections. If not
set, the transport will work as TCP client only (TCP only).

List
<uint16>

<tls> Allows to define TLS related parameters and options (TCP only). TLS Configuration
<segment_size>Size (in bytes) of the shared-memory segment. (OPTIONAL, SHM

only).
uint32 262144

<port_queue_capacity>Capacity (in number of messages) available to every Listener (OP-
TIONAL, SHM only).

uint32 512

<healthy_check_timeout_ms>Maximum time-out (in milliseconds) used when checking whether
a Listener is alive & OK (OPTIONAL, SHM only).

uint32 1000

<rtps_dump_file>Complete path (including file) where RTPS messages will be stored
for debugging purposes. An empty string indicates no trace will be
performed (OPTIONAL, SHM only).

string empty

RTCP is the control protocol for communications with RTPS over TCP/IP connections.

There are more examples of transports descriptors in Transports.

134 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

14.3.1 TLS Configuration

Fast-RTPS allows configuring TLS parameters through the <tls> tag of its Transport Descriptor. The full list of
options is listed here:

<transport_descriptors>
<transport_descriptor>

<transport_id>Test</transport_id>
<type>TCPv4</type>
<tls>

<password>Password</password>
<private_key_file>Key_file.pem</private_key_file>
<rsa_private_key_file>RSA_file.pem</rsa_private_key_file>
<cert_chain_file>Chain.pem</cert_chain_file>
<tmp_dh_file>DH.pem</tmp_dh_file>
<verify_file>verify.pem</verify_file>
<verify_mode>

<verify>VERIFY_PEER</verify>
</verify_mode>
<options>

<option>NO_TLSV1</option>
<option>NO_TLSV1_1</option>

</options>
<verify_paths>

<verify_path>Path1</verify_path>
<verify_path>Path2</verify_path>
<verify_path>Path3</verify_path>

</verify_paths>
<verify_depth>55</verify_depth>
<default_verify_path>true</default_verify_path>
<handshake_role>SERVER</handshake_role>

</tls>
</transport_descriptor>

</transport_descriptors>

14.3. Transport descriptors 135

FastRTPS Documentation, Release 1.10.0

Name Description Values De-
fault

<password>Password of the private_key_file if pro-
vided (or RSA).

string

<private_key_file>Path to the private key certificate file. string
<rsa_private_key_file>Path to the private key RSA certificate

file.
string

<cert_chain_file>Path to the public certificate chain file. string
<tmp_dh_file>Path to the Diffie-Hellman parameters

file
string

<verify_file>Path to the CA (Certification- Author-
ity) file.

string

<verify_mode>Establishes the verification mode mask. VERIFY_NONE, VERIFY_PEER,
VERIFY_FAIL_IF_NO_PEER_CERT,
VERIFY_CLIENT_ONCE

<options>Establishes the SSL Context options
mask

DEFAULT_WORKAROUNDS, NO_COMPRESSION,
NO_SSLV2, NO_SSLV3, NO_TLSV1,
NO_TLSV1_1, NO_TLSV1_2, NO_TLSV1_3,
SINGLE_DH_USE

<verify_paths>Paths where the system will look for
verification files.

string

<verify_depth>Maximum allowed depth for verify in-
termediate certificates.

uint32

<default_verify_path>Default paths where the system will
look for verification files.

boolean false

<handshake_role>Role that the transport will take on
handshaking. On default, the acceptors
act as SERVER and the connectors as
CLIENT.

DEFAULT, SERVER, CLIENT DEFAULT

14.4 XML Dynamic Types

XML Dynamic Types allows creating eProsima Fast RTPS Dynamic Types directly defining them through XML. It
allows any application to change TopicDataTypes without modifying its source code.

14.4.1 XML Structure

The XML Types definition (<types> tag) can be placed similarly to the profiles tag inside the XML file. It can be a
stand-alone XML Types file or be a child of the Fast-RTPS XML root tag (<dds>). Inside the types tag, there must
be one or more type tags (<type>).

Stand-Alone:

<types>
<type>

<!-- Type definition -->
</type>
<type>

<!-- Type definition -->
<!-- Type definition -->

(continues on next page)

136 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

</type>
</types>

Rooted:

<dds>
<types>

<type>
<!-- Type definition -->

</type>
<type>

<!-- Type definition -->
<!-- Type definition -->

</type>
</types>

</dds>

Finally, each <type> tag can contain one or more Type definitions. Defining several types inside a <type> tag or
defining each type in its <type> tag has the same result.

14.4.2 Type definition

Enum

The <enum> type is defined by its name and a set of enumerators, each of them with its name and its (optional)
value.

Example:

XML C++

<enum name="MyEnum">
<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>

DynamicTypeBuilder_ptr enum_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_enum_builder();
enum_builder->set_name("MyEnum");
enum_builder->add_empty_member(0, "A");
enum_builder->add_empty_member(1, "B");
enum_builder->add_empty_member(2, "C");
DynamicType_ptr enum_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(enum_builder.
→˓get());

Typedef

The <typedef> type is defined by its name and its value or an inner element for complex types. <typedef>
corresponds to Alias in Dynamic Types glossary.

Example:

14.4. XML Dynamic Types 137

FastRTPS Documentation, Release 1.10.0

XML C++

<typedef name="MyAliasEnum" type=
→˓"nonBasic" nonBasicTypeName="MyEnum"/>

<typedef name="MyAliasArray" type="int32
→˓" arrayDimension="2,2"/>

DynamicTypeBuilder_ptr alias1_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_alias_builder(enum_
→˓builder.get(), "MyAlias1");
DynamicType_ptr alias1_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(alias1_builder.
→˓get());

std::vector<uint32_t> sequence_lengths =
→˓{ 2, 2 };
DynamicTypeBuilder_ptr int_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr array_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_array_builder(int_
→˓builder.get(), sequence_lengths);
DynamicTypeBuilder_ptr alias2_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_alias_builder(array_
→˓builder.get(), "MyAlias2");
DynamicType_ptr alias2_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(alias2_builder.
→˓get());

Struct

The <struct> type is defined by its name and inner members.

Example:

XML C++

<struct name="MyStruct">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>

DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
DynamicTypeBuilder_ptr struct_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_struct_builder();

struct_builder->set_name("MyStruct");
struct_builder->add_member(0, "first",
→˓long_builder.get());
struct_builder->add_member(1, "second",
→˓long_long_builder.get());
DynamicType_ptr struct_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(struct_builder.
→˓get());

138 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

Structs can inherit from another structs:

XML C++

<struct name="ParentStruct">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>
<struct name="ChildStruct" baseType=
→˓"ParentStruct">

<member name="third" type="int32"/>
<member name="fourth" type="int64"/>

</struct>

DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
DynamicTypeBuilder_ptr struct_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_struct_builder();

struct_builder->set_name("ParentStruct");
struct_builder->add_member(0, "first",
→˓long_builder.get());
struct_builder->add_member(1, "second",
→˓long_long_builder.get());
DynamicType_ptr struct_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(struct_builder.
→˓get());

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_

→˓instance()->create_child_struct_
→˓builder(struct_builder.get());

child_builder->set_name("ChildStruct");
child_builder->add_member(0, "third",
→˓long_builder.get());
child_builder->add_member(1, "fourth",
→˓long_long_builder.get());
DynamicType_ptr child_struct_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(child_builder.
→˓get());

Union

The <union> type is defined by its name, a discriminator and a set of cases. Each case has one or more
caseDiscriminator and a member.

Example:

14.4. XML Dynamic Types 139

FastRTPS Documentation, Release 1.10.0

XML C++

<union name="MyUnion">
<discriminator type="byte"/>
<case>

<caseDiscriminator value="0"/>
<caseDiscriminator value="1"/>
<member name="first" type="int32

→˓"/>
</case>
<case>

<caseDiscriminator value="2"/>
<member name="second" type=

→˓"nonBasic" nonBasicTypeName="MyStruct"/
→˓>

</case>
<case>

<caseDiscriminator value="default
→˓"/>

<member name="third" type=
→˓"nonBasic" nonBasicTypeName="int64"/>

</case>
</union>

DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
DynamicTypeBuilder_ptr struct_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_struct_builder();
DynamicTypeBuilder_ptr octet_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_byte_builder();
DynamicTypeBuilder_ptr union_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_union_builder(octet_
→˓builder.get());

union_builder->set_name("MyUnion");
union_builder->add_member(0, "first",
→˓long_builder.get(), "", { 0, 1 },
→˓false);
union_builder->add_member(1, "second",
→˓struct_builder.get(), "", { 2 },
→˓false);
union_builder->add_member(2, "third",
→˓long_long_builder.get(), "", { },
→˓true);
DynamicType_ptr union_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(union_builder.
→˓get());

Bitset

The <bitset> type is defined by its name and inner bitfields.

Example:

140 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

XML C++

<bitset name="MyBitSet">
<bitfield name="a" bit_bound="3"/>
<bitfield name="b" bit_bound="1"/>
<bitfield bit_bound="4"/>
<bitfield name="c" bit_bound="10"/>
<bitfield name="d" bit_bound="12"

→˓type="int16"/>
</bitset>

DynamicTypeBuilderFactory* m_factory =
→˓DynamicTypeBuilderFactory::get_
→˓instance();
DynamicTypeBuilder_ptr builder_ptr = m_
→˓factory->create_bitset_builder();
builder_ptr->add_member(0, "a", m_
→˓factory->create_byte_builder()->
→˓build());
builder_ptr->add_member(1, "b", m_
→˓factory->create_bool_builder()->
→˓build());
builder_ptr->add_member(3, "c", m_
→˓factory->create_uint16_builder()->
→˓build());
builder_ptr->add_member(4, "d", m_
→˓factory->create_int16_builder()->
→˓build());
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_BIT_BOUND_ID,
→˓"value", "3");
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_POSITION_ID,
→˓"value", "0");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_BIT_BOUND_ID,
→˓"value", "1");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_POSITION_ID,
→˓"value", "3");
builder_ptr->apply_annotation_to_
→˓member(3, ANNOTATION_BIT_BOUND_ID,
→˓"value", "10");
builder_ptr->apply_annotation_to_
→˓member(3, ANNOTATION_POSITION_ID,
→˓"value", "8"); // 4 empty
builder_ptr->apply_annotation_to_
→˓member(4, ANNOTATION_BIT_BOUND_ID,
→˓"value", "12");
builder_ptr->apply_annotation_to_
→˓member(4, ANNOTATION_POSITION_ID,
→˓"value", "18");
builder_ptr->set_name("MyBitSet");

A bitfield without name is an inaccessible set of bits. Bitfields can specify their management type to ease their
modification and access. The bitfield’s bit_bound is mandatory and cannot be bigger than 64.

Bitsets can inherit from another bitsets:

14.4. XML Dynamic Types 141

FastRTPS Documentation, Release 1.10.0

XML C++

<bitset name="ParentBitSet">
<bitfield name="a" bit_bound="3"/>
<bitfield name="b" bit_bound="1"/>

</bitset>

<bitset name="ChildBitSet" baseType=
→˓"ParentBitSet">

<bitfield name="c" bit_bound="30"/>
<bitfield name="d" bit_bound="13"/>

</bitset>

DynamicTypeBuilderFactory* m_factory =
→˓DynamicTypeBuilderFactory::get_
→˓instance();
DynamicTypeBuilder_ptr builder_ptr = m_
→˓factory->create_bitset_builder();
builder_ptr->add_member(0, "a", m_
→˓factory->create_byte_builder()->
→˓build());
builder_ptr->add_member(1, "b", m_
→˓factory->create_bool_builder()->
→˓build());
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_BIT_BOUND_ID,
→˓"value", "3");
builder_ptr->apply_annotation_to_
→˓member(0, ANNOTATION_POSITION_ID,
→˓"value", "0");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_BIT_BOUND_ID,
→˓"value", "1");
builder_ptr->apply_annotation_to_
→˓member(1, ANNOTATION_POSITION_ID,
→˓"value", "3");
builder_ptr->set_name("ParentBitSet");

DynamicTypeBuilder_ptr child_ptr = m_
→˓factory->create_child_struct_
→˓builder(builder_ptr.get());
child_ptr->add_member(3, "c", m_factory->
→˓create_uint16_builder()->build());
child_ptr->add_member(4, "d", m_factory->
→˓create_int16_builder()->build());
child_ptr->apply_annotation_to_member(3,
→˓ANNOTATION_BIT_BOUND_ID, "value", "10
→˓");
child_ptr->apply_annotation_to_member(3,
→˓ANNOTATION_POSITION_ID, "value", "8");
→˓// 4 empty
child_ptr->apply_annotation_to_member(4,
→˓ANNOTATION_BIT_BOUND_ID, "value", "12
→˓");
child_ptr->apply_annotation_to_member(4,
→˓ANNOTATION_POSITION_ID, "value", "18");
child_ptr->set_name("ChildBitSet");

Bitmask

The <bitmask> type is defined by its name and inner bit_values.

Example:

142 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

XML C++

<bitmask name="MyBitMask" bit_bound="8">
<bit_value name="flag0" position="0"/

→˓>
<bit_value name="flag1"/>
<bit_value name="flag2" position="2"/

→˓>
<bit_value name="flag5" position="5"/

→˓>
</bitmask>

DynamicTypeBuilderFactory* m_factory =
→˓DynamicTypeBuilderFactory::get_
→˓instance();
DynamicTypeBuilder_ptr builder_ptr = m_
→˓factory->create_bitmask_builder(8);
builder_ptr->add_empty_member(0, "flag0
→˓");
builder_ptr->add_empty_member(1, "flag1
→˓");
builder_ptr->add_empty_member(2, "flag2
→˓");
builder_ptr->add_empty_member(5, "flag5
→˓");
builder_ptr->set_name("MyBitMask");

The bitmask can specify its bit_bound, this is, the number of bits that the type will manage. Internally will be converted
to the minimum type that allows to store them. The maximum allowed bit_bound is 64. Bit_values can define their
position inside the bitmask.

14.4.3 Member types

Member types are any type that can belong to a <struct> or a <union>, or be aliased by a <typedef>.

Basic types

The identifiers of the available basic types are:

boolean int64 float128
byte uint16 string
char uint32 wstring
wchar uint64
int16 float32
int32 float64

All of them are defined as follows:

XML C++

<member name="my_long" type="int64"/> DynamicTypeBuilder_ptr long_long_builder
→˓= DynamicTypeBuilderFactory::get_
→˓instance()->create_int64_builder();
long_long_builder->set_name("my_long");
DynamicType_ptr long_long_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(long_long_
→˓builder.get());

Arrays

Arrays are defined in the same way as any other member type but add the attribute arrayDimensions. The format
of this dimensions attribute is the size of each dimension separated by commas.

14.4. XML Dynamic Types 143

FastRTPS Documentation, Release 1.10.0

Example:

XML C++

<member name="long_array" type="int32"
→˓arrayDimensions="2,3,4"/>

std::vector<uint32_t> lengths = { 2, 3,
→˓4 };
DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr array_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_array_builder(long_
→˓builder.get(), lengths);
array_builder->set_name("long_array");
DynamicType_ptr array_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(array_builder.
→˓get());

It’s IDL analog would be:

long long_array[2][3][4];

Sequences

Sequences are defined by its name, its content type, and its sequenceMaxLength. The type of its content should
be defined by its type attribute.

Example:

XML C++

<typedef name="my_sequence_inner" type=
→˓"int32" sequenceMaxLength="2"/>
<struct name="SeqSeqStruct">

<member name="my_sequence_sequence"
→˓type="nonBasic" nonBasicTypeName="my_
→˓sequence_inner" sequenceMaxLength="3"/>
</struct>

uint32_t child_len = 2;
DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr seq_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_sequence_
→˓builder(long_builder.get(),

child_len);
uint32_t length = 3;
DynamicTypeBuilder_ptr seq_seq_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_sequence_builder(

seq_builder.get(), length);
seq_seq_builder->set_name("my_sequence_
→˓sequence");
DynamicType_ptr seq_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(seq_seq_
→˓builder.get());

The example shows a sequence with sequenceMaxLength 3 of sequences with sequenceMaxLength 2 with
<int32> contents. As IDL would be:

144 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

sequence<sequence<long,2>,3> my_sequence_sequence;

Note that the inner sequence has been defined before.

Maps

Maps are similar to sequences, but they need to define two types instead of one. One type defines its key_type,
and the other type defines its elements types. Again, both types can be defined as attributes or as members, but when
defined as members, they should be contained in another XML element (<key_type> and <type> respectively).

Example:

XML C++

<typedef name="my_map_inner" type="int32
→˓" key_type="int32" mapMaxLength="2"/>
<struct name="MapMapStruct">

<member name="my_map_map" type=
→˓"nonBasic" nonBasicTypeName="my_map_
→˓inner" key_type="int32" mapMaxLength="2
→˓"/>
</struct>

uint32_t length = 2;
DynamicTypeBuilder_ptr long_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_int32_builder();
DynamicTypeBuilder_ptr map_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_map_builder(long_
→˓builder.get(),

long_builder.get(), length);

DynamicTypeBuilder_ptr map_map_builder =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_map_builder(long_
→˓builder.get(),

map_builder.get(), length);
map_map_builder->set_name("my_map_map");
DynamicType_ptr map_type =
→˓DynamicTypeBuilderFactory::get_
→˓instance()->create_type(map_map_
→˓builder.get());

Is equivalent to the IDL:

map<long,map<long,long,2>,2> my_map_map;

Complex types

Once defined, complex types can be used as members in the same way a basic or array type would be.

Example:

<struct name="OtherStruct">
<member name="my_enum" type="nonBasic" nonBasicTypeName="MyEnum"/>
<member name="my_struct" type="nonBasic" nonBasicTypeName="MyStruct"

→˓arrayDimensions="5"/>
</struct>

14.4.4 Usage

In the application that will make use of XML Types, it’s mandatory to load the XML file that defines the types before
trying to instantiate DynamicPubSubTypes of these types. It’s important to remark that only <struct> types generate
usable DynamicPubSubType instances.

14.4. XML Dynamic Types 145

FastRTPS Documentation, Release 1.10.0

// Load the XML File
XMLP_ret ret = XMLProfileManager::loadXMLFile("types.xml");
// Create the "MyStructPubSubType"
DynamicPubSubType *pbType = XMLProfileManager::CreateDynamicPubSubType("MyStruct");
// Create a "MyStruct" instance
DynamicData* data = DynamicDataFactory::get_instance()->create_data(pbType->
→˓GetDynamicType());

14.5 Participant profiles

Participant profiles allow declaring Participant configuration from an XML file. All the configuration options for
the participant belong to the <rtps> label. The attribute profile_name will be the name that the Domain will
associate to the profile to load it as shown in Loading and applying profiles.

<participant profile_name="part_profile_name">
<rtps>

<name>Participant Name</name> <!-- String -->

<defaultUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</defaultUnicastLocatorList>

<defaultMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</defaultMulticastLocatorList>

<sendSocketBufferSize>8192</sendSocketBufferSize> <!-- uint32 -->

<listenSocketBufferSize>8192</listenSocketBufferSize> <!-- uint32 -->

<builtin>
<!-- BUILTIN -->

</builtin>

<port>
<portBase>7400</portBase> <!-- uint16 -->
<domainIDGain>200</domainIDGain> <!-- uint16 -->
<participantIDGain>10</participantIDGain> <!-- uint16 -->
<offsetd0>0</offsetd0> <!-- uint16 -->
<offsetd1>1</offsetd1> <!-- uint16 -->
<offsetd2>2</offsetd2> <!-- uint16 -->
<offsetd3>3</offsetd3> <!-- uint16 -->

</port>

<participantID>99</participantID> <!-- int32 -->

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod> <!-- uint32 -->
<periodMillisecs>1000</periodMillisecs> <!-- uint32 -->

(continues on next page)

146 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

</throughputController>

<userTransports>
<transport_id>TransportId1</transport_id> <!-- string -->
<transport_id>TransportId2</transport_id> <!-- string -->

</userTransports>

<useBuiltinTransports>false</useBuiltinTransports> <!-- boolean -->

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<allocation>
<!-- ALLOCATION -->

</allocation>

</rtps>
</participant>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• DURATION means it expects a DurationType.

• For BUILTIN details, please refer to Built-in parameters.

• For ALLOCATION details, please refer to Participant allocation parameters.

List with the possible configuration parameter:

14.5. Participant profiles 147

FastRTPS Documentation, Release 1.10.0

Name Description Values De-
fault

<name> Participant’s name. It’s not the same field that profile_name. string_255
<defaultUnicastLocatorList>List of default input unicast locators. It expects a LocatorListType. LocatorListType
<defaultMulticastLocatorList>List of default input multicast locators. It expects a LocatorListType. LocatorListType
<sendSocketBufferSize>Size in bytes of the output socket buffer. If the value is zero then Fas-

tRTPS will use the default size from the configuration of the sockets,
using a minimum size of 65536 bytes.

uint32 0

<listenSocketBufferSize>Size in bytes of the input socket buffer. If the value is zero then Fas-
tRTPS will use the default size from the configuration of the sockets,
using a minimum size of 65536 bytes.

uint32 0

<builtin> Built-in parameters. Explained in the Built-in parameters section. Built-in
parameters

<port> Allows defining the port parameters and gains related to the RTPS pro-
tocol. Explained in the Port section.

Port

<participantID>Participant’s identifier. Typically it will be automatically generated by
the Domain.

int32 0

<throughputController>Allows defining a maximum throughput. Explained in the Throughput
section.

Throughput

<userTransports>Transport descriptors to be used by the participant. List
<string>

<useBuiltinTransports>Boolean field to indicate to the system that the participant will use the
default builtin transport independently of its <userTransports>.

bool true

<propertiesPolicy>Additional configuration properties. It expects a PropertiesPolicyType. Proper-
tiesPolicy-
Type

<allocation> Configuration regarding allocation behavior. It expects a Participant
allocation parameters

Participant
allocation
parameters

Port Configuration

Name Description Values Default
<portBase> Base port. uint16 7400
<domainIDGain> Gain in domainId. uint16 250
<participantIDGain> Gain in participantId. uint16 2
<offsetd0> Multicast metadata offset. uint16 0
<offsetd1> Unicast metadata offset. uint16 10
<offsetd2> Multicast user data offset. uint16 1
<offsetd3> Unicast user data offset. uint16 11

14.5.1 Participant allocation parameters

This section of the Participant's rtps configuration allows defining parameters related with allocation behav-
ior on the participant.

<allocation>
<remote_locators>

<max_unicast_locators>4</max_unicast_locators> <!-- uint32 -->
<max_multicast_locators>1</max_multicast_locators> <!-- uint32 -->

</remote_locators>
(continues on next page)

148 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<total_participants>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_participants>
<total_readers>

<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_readers>
<total_writers>

<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_writers>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

</allocation>

Name Description Values De-
fault

<max_unicast_locators>Maximum number of unicast locators expected on a remote entity. It is rec-
ommended to use the maximum number of network interfaces found on any
machine the participant will connect to.

UInt32 4

<max_multicast_locators>Maximum number of multicast locators expected on a remote entity. May be
set to zero to disable multicast traffic.

UInt32 1

<total_participants>Participant Allocation Configuration related to the total number of partici-
pants in the domain (local and remote).

Allo-
cation
Configu-
ration

<total_readers>Participant Allocation Configuration related to the total number of readers on
each participant (local and remote).

Allo-
cation
Configu-
ration

<total_writers>Participant Allocation Configuration related to the total number of writers on
each participant (local and remote).

Allo-
cation
Configu-
ration

<max_partitions>Maximum size of the partitions submessage. Zero for no limit. See Submes-
sage Size Limit.

UInt32

<max_user_data>Maximum size of the user data submessage. Zero for no limit. See Submes-
sage Size Limit.

UInt32

<max_properties>Maximum size of the properties submessage. Zero for no limit. See Submes-
sage Size Limit.

UInt32

14.5.2 Built-in parameters

This section of the Participant's rtps configuration allows defining built-in parameters.

<builtin>
<discovery_config>

(continues on next page)

14.5. Participant profiles 149

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<discoveryProtocol>NONE</discoveryProtocol> <!-- DiscoveryProtocol enum -->

<ignoreParticipantFlags>FILTER_DIFFERENT_HOST</ignoreParticipantFlags> <!--
→˓ParticipantFlags enum -->

<EDP>SIMPLE</EDP> <!-- string -->

<leaseDuration>
<!-- DURATION -->
<sec>20</sec>
<nanosec>0</nanosec>

</leaseDuration>

<leaseAnnouncement>
<!-- DURATION -->
<sec>3</sec>
<nanosec>0</nanosec>

</leaseAnnouncement>

<initialAnnouncements>
<!-- INITIAL_ANNOUNCEMENTS -->

</initialAnnouncements>

<simpleEDP>
<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER> <!-- boolean -->
<PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER> <!-- boolean -->

</simpleEDP>

<staticEndpointXMLFilename>filename.xml</staticEndpointXMLFilename> <!--
→˓string -->

</discovery_config>

<avoid_builtin_multicast>true</avoid_builtin_multicast>

<use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol> <!-- boolean -
→˓->

<domainId>4</domainId> <!-- uint32 -->

<metatrafficUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</metatrafficUnicastLocatorList>

<metatrafficMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</metatrafficMulticastLocatorList>

<initialPeersList>
<!-- LOCATOR_LIST -->

(continues on next page)

150 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<locator>
<udpv4/>

</locator>
</initialPeersList>

<readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</readerHistoryMemoryPolicy>
<readerPayloadSize>512</readerPayloadSize>

<writerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</writerHistoryMemoryPolicy>
<writerPayloadSize>512</writerPayloadSize>

<mutation_tries>55</mutation_tries>
</builtin>

Name Description Values Default
<discovery_config> This is the main tag where discovery-

related settings can be configured.
discov-
ery_config

<avoid_builtin_multicast>Restricts metatraffic multicast traffic to
PDP only.

Boolean true

<use_WriterLivelinessProtocol>Indicates to use the WriterLiveliness pro-
tocol.

Boolean true

<domainId> DomainId to be used by the RTPSPartici-
pant.

UInt32 0

<metatrafficUnicastLocatorList>Metatraffic Unicast Locator List List of Loca-
torListType

<metatrafficMulticastLocatorList>Metatraffic Multicast Locator List List of Loca-
torListType

<initialPeersList> Initial peers. List of Loca-
torListType

<readerHistoryMemoryPolicy>Memory policy for builtin readers. historyMem-
oryPolicy

PREALLOCATED_WITH_REALLOC

<writerHistoryMemoryPolicy>Memory policy for builtin writers. historyMem-
oryPolicy

PREALLOCATED_WITH_REALLOC

<readerPayloadSize> Maximum payload size for builtin readers. UInt32 512
<writerPayloadSize> Maximum payload size for builtin writers. UInt32 512
<mutation_tries> Number of different ports to try if reader’s

physical port is already in use.
UInt32 100

discovery_config

14.5. Participant profiles 151

FastRTPS Documentation, Release 1.10.0

Name Description Values Default
<discoveryProtocol> Indicates which kind of

PDP protocol the partici-
pant must use.

SIMPLE, CLIENT,
SERVER, BACKUP

SIMPLE

<ignoreParticipantFlags>Restricts metatraffic using
several filtering criteria.

ignoreParticipantFlags NO_FILTER

<EDP>
• If set to SIMPLE,
<simpleEDP>
would be used.

• If set to STATIC,
StaticEDP based
on an XML file
would be used
with the contents of
<staticEndpointXMLFilename>.

SIMPLE, STATIC SIMPLE

<simpleEDP> Attributes of the Sim-
pleEDP protocol

simpleEDP

<leaseDuration> Indicates how long
this RTPSParticipant
should consider remote
RTPSParticipants alive.

DurationType 20 s

<leaseAnnouncement> The period for the
RTPSParticipant to send
its Discovery Message
to all other discovered
RTPSParticipants as well
as to all Multicast ports.

DurationType 3 s

<initialAnnouncements>Allows the user to config-
ure the number and period
of the initial RTPSpar-
ticipant’s Discovery mes-
sages.

Initial Announcements

<staticEndpointXMLFilename>StaticEDP XML filename.
Only necessary if <EDP>
is set to STATIC

string

ignoreParticipantFlags

Possible values Description
NO_FILTER All Discovery traffic is processed
FILTER_DIFFERENT_HOST Discovery traffic from another host is discarded
FILTER_DIFFERENT_PROCESS Discovery traffic from another process on the same host

is discarded
FILTER_SAME_PROCESS Discovery traffic from participant’s own process is dis-

carded.
FILTER_DIFFERENT_PROCESS |
FILTER_SAME_PROCESS

Discovery traffic from participant’s own host is dis-
carded.

simpleEDP

152 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

Name Description Values De-
fault

<PUBWRITER_SUBREADER>Indicates if the participant must use Publication Writer and Sub-
scription Reader.

Boolean true

<PUBREADER_SUBWRITER>Indicates if the participant must use Publication Reader and Sub-
scription Writer.

Boolean true

Initial Announcements

Name Description Val-
ues

De-
fault

<count>Number of Discovery Messages to send at the period specified by <period>. After these
announcements, the RTPSParticipant will continue sending its Discovery Messages at the
<leaseAnnouncement> rate.

Uint325

<period>The period for the RTPSParticipant to send its first <count> Discovery Messages. Du-
ra-
tionType

100
ms

14.6 Publisher profiles

Publisher profiles allow declaring Publisher configuration from an XML file. The attribute profile_name is the
name that the Domain associates to the profile to load it as shown in the Loading and applying profiles section.

<publisher profile_name="pub_profile_name">
<topic>

<!-- TOPIC_TYPE -->
</topic>

<qos>
<!-- QOS -->

</qos>

<times> <!-- writerTimesType -->
<initialHeartbeatDelay> <!-- DURATION -->

<sec>0</sec>
<nanosec>12</nanosec>

</initialHeartbeatDelay>
<heartbeatPeriod> <!-- DURATION -->

<sec>3</sec>
<nanosec>0</nanosec>

</heartbeatPeriod>
<nackResponseDelay> <!-- DURATION -->

<sec>0</sec>
<nanosec>5</nanosec>

</nackResponseDelay>
<nackSupressionDuration> <!-- DURATION -->

<sec>0</sec>
<nanosec>0</nanosec>

</nackSupressionDuration>
</times>

<unicastLocatorList>
(continues on next page)

14.6. Publisher profiles 153

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</multicastLocatorList>

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod> <!-- uint32 -->
<periodMillisecs>1000</periodMillisecs> <!-- uint32 -->

</throughputController>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<userDefinedID>55</userDefinedID> <!-- Int16 -->

<entityID>66</entityID> <!-- Int16 -->

<matchedSubscribersAllocation>
<initial>0</initial> <!-- uint32 -->
<maximum>0</maximum> <!-- uint32 -->
<increment>1</increment> <!-- uint32 -->

</matchedSubscribersAllocation>

</publisher>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• DURATION means it expects a DurationType.

• For QOS details, please refer to QOS.

• TOPIC_TYPE is detailed in section Topic Type.

154 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

Name Description Values Default
<topic> Topic Type configuration of the publisher. Topic Type
<qos> Publisher QOS configuration. QOS
<times> It allows configuring some time related parameters

of the publisher.
Times

<unicastLocatorList> List of input unicast locators. It expects a Loca-
torListType.

List of Loca-
torListType

<multicastLocatorList>List of input multicast locators. It expects a Loca-
torListType.

List of Loca-
torListType

<throughputController>Limits the output bandwidth of the publisher. Throughput
<historyMemoryPolicy>Memory allocation kind for publisher’s history. historyMemo-

ryPolicy
PREALLOCATED

<propertiesPolicy> Additional configuration properties. PropertiesPoli-
cyType

<userDefinedID> Used for StaticEndpointDiscovery. Int16 -1
<entityID> EntityId of the endpoint. Int16 -1
<matchedSubscribersAllocation>Publisher Allocation Configuration related to the

number of matched subscribers.
Allocation
Configuration

Times

Name Description Values De-
fault

<initialHeartbeatDelay>Initial heartbeat delay. Dura-
tionType

~45
ms

<heartbeatPeriod> Periodic HB period. Dura-
tionType

3 s

<nackResponseDelay>Delay to apply to the response of a ACKNACK message. Dura-
tionType

~45
ms

<nackSupressionDuration>This time allows the RTPSWriter to ignore nack messages too
soon after the data has been sent.

Dura-
tionType

0 ms

14.7 Subscriber profiles

Subscriber profiles allow declaring Subscriber configuration from an XML file. The attribute profile_name is the
name that the Domain associates to the profile to load it as shown in Loading and applying profiles.

<subscriber profile_name="sub_profile_name">
<topic>

<!-- TOPIC_TYPE -->
</topic>

<qos>
<!-- QOS -->

</qos>

<times> <!-- readerTimesType -->
<initialAcknackDelay> <!-- DURATION -->

<sec>0</sec>
<nanosec>70</nanosec>

</initialAcknackDelay>
(continues on next page)

14.7. Subscriber profiles 155

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<heartbeatResponseDelay> <!-- DURATION -->
<sec>0</sec>
<nanosec>5</nanosec>

</heartbeatResponseDelay>
</times>

<unicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</multicastLocatorList>

<expectsInlineQos>true</expectsInlineQos> <!-- boolean -->

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<userDefinedID>55</userDefinedID> <!-- Int16 -->

<entityID>66</entityID> <!-- Int16 -->

<matchedPublishersAllocation>
<initial>0</initial> <!-- uint32 -->
<maximum>0</maximum> <!-- uint32 -->
<increment>1</increment> <!-- uint32 -->

</matchedPublishersAllocation>

</subscriber>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• DURATION means it expects a DurationType.

• For QOS details, please refer to QOS.

• TOPIC_TYPE is detailed in section Topic Type.

156 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

Name Description Values Default
<topic> Topic Type configuration of the subscriber. Topic Type
<qos> Subscriber QOS configuration. QOS
<times> It allows configuring some time related parameters

of the subscriber.
Times

<unicastLocatorList>List of input unicast locators. It expects a Loca-
torListType.

List of Loca-
torListType

<multicastLocatorList>List of input multicast locators. It expects a Loca-
torListType.

List of Loca-
torListType

<expectsInlineQos> It indicates if QOS is expected inline. Boolean false
<historyMemoryPolicy>Memory allocation kind for subscriber’s history. historyMemo-

ryPolicy
PREALLOCATED

<propertiesPolicy> Additional configuration properties. PropertiesPoli-
cyType

<userDefinedID> Used for StaticEndpointDiscovery. Int16 -1
<entityID> EntityId of the endpoint. Int16 -1
<matchedPublishersAllocation>Subscriber Allocation Configuration related to the

number of matched publishers.
Allocation
Configuration

Times

Name Description Values De-
fault

<initialAcknackDelay> Initial AckNack delay. Dura-
tionType

~45 ms

<heartbeatResponseDelay>Delay to be applied when a heartbeat message is re-
ceived.

Dura-
tionType

~4.5
ms

14.8 Common

In the above profiles, some types are used in several different places. To avoid too many details, some of that places
have a tag like LocatorListType that indicates that field is defined in this section.

14.8.1 LocatorListType

It represents a list of Locator_t. LocatorListType is normally used as an anonymous type, this is, it hasn’t its own
label. Instead, it is used inside other configuration parameter labels that expect a list of locators and give it sense,
for example, in <defaultUnicastLocatorList>. The locator kind is defined by its own tag and can take the
values <udpv4>, <tcpv4>, <udpv6>, and <tcpv6>:

<defaultUnicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, typical UDP usage -->
<port>7400</port> <!-- uint32 -->
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
(continues on next page)

14.8. Common 157

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<!-- Both physical and logical (port), useful in TCP transports -->
<physical_port>5100</physical_port> <!-- uint16 -->
<port>7400</port> <!-- uint16 -->
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>
<locator>

<tcpv6>
<!-- Both physical and logical (port), useful in TCP transports -->
<physical_port>5100</physical_port> <!-- uint16 -->
<port>7400</port> <!-- uint16 -->
<address>fe80::55e3:290:165:5af8</address>

</tcpv6>
</locator>

</defaultUnicastLocatorList>

In this example, there are one locator of each kind in <defaultUnicastLocatorList>.

Let’s see each possible Locator’s field in detail:

Name Description Values De-
fault

<port> RTPS port number of the locator. Physical port in UDP,
logical port in TCP.

Uint32 0

<physical_port>TCP’s physical port. Uint32 0
<address> IP address of the locator. string with ex-

pected format
“”

<unique_lan_id>The LAN ID uniquely identifies the LAN the locator be-
longs to (TCPv4 only).

string (16 bytes)

<wan_address>WAN IPv4 address (TCPv4 only). string with IPv4
Format

0.0.
0.0

14.8.2 PropertiesPolicyType

PropertiesPolicyType (XML label <propertiesPolicy>) allows defining a set of generic properties. It’s useful
at defining extended or custom configuration parameters.

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name> <!-- string -->
<value>Property1Value</value> <!-- string -->
<propagate>false</propagate> <!-- boolean -->

</property>
<property>

<name>Property2Name</name> <!-- string -->
(continues on next page)

158 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<value>Property2Value</value> <!-- string -->
<propagate>true</propagate> <!-- boolean -->

</property>
</properties>

</propertiesPolicy>

Name Description Values De-
fault

<name> Name to identify the property. string
<value> Property’s value. string
<propagate> Indicates if it is going to be serialized along with the object it belongs

to.
Boolean false

14.8.3 DurationType

DurationType expresses a period of time and it’s commonly used as an anonymous type, this is, it hasn’t its own label.
Instead, it is used inside other configuration parameter labels that give it sense, like <leaseAnnouncement> or
<leaseDuration>.

<discovery_config>
<leaseDuration>

<sec>DURATION_INFINITY</sec> <!-- string -->
</leaseDuration>

<leaseDuration>
<sec>500</sec> <!-- int32 -->
<nanosec>0</nanosec> <!-- uint32 -->

</leaseDuration>

<leaseAnnouncement>
<sec>1</sec> <!-- int32 -->
<nanosec>856000</nanosec> <!-- uint32 -->

</leaseAnnouncement>
</discovery_config>

Duration time can be defined through <sec> plus <nanosec> labels (see table below). An infi-
nite value can be specified by using the values DURATION_INFINITY, DURATION_INFINITE_SEC and
DURATION_INFINITE_NSEC.

Name Description Values Default
<sec> Number of seconds. Int32 0
<nanosec> Number of nanoseconds. UInt32 0

14.8.4 Topic Type

The topic name and data type are used as meta-data to determine whether Publishers and Subscribers can exchange
messages. There is a deeper explanation of the “topic” field here: Topic information.

<topic>
<kind>NO_KEY</kind> <!-- string -->
<name>TopicName</name> <!-- string -->

(continues on next page)

14.8. Common 159

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<dataType>TopicDataTypeName</dataType> <!-- string -->
<historyQos>

<kind>KEEP_LAST</kind> <!-- string -->
<depth>20</depth> <!-- uint32 -->

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples> <!-- unint32 -->
<max_instances>2</max_instances> <!-- unint32 -->
<max_samples_per_instance>1</max_samples_per_instance> <!-- unint32 -->
<allocated_samples>20</allocated_samples> <!-- unint32 -->

</resourceLimitsQos>
</topic>

Name Description Values De-
fault

<kind> It defines the Topic’s kind NO_KEY,
WITH_KEY

NO_KEY

<name> It defines the Topic’s name. Must be unique. string_255
<dataType> It references the Topic’s data type. string_255
<historyQos>It controls the behavior of Fast RTPS when the value of an instance changes

before it is finally communicated to some of its existing DataReader entities.
Histo-
ryQos

<resourceLimitsQos>It controls the resources that Fast RTPS can use in order to meet the require-
ments imposed by the application and other QoS settings.

Resource-
LimitsQos

HistoryQoS

It controls the behavior of Fast RTPS when the value of an instance changes before it is finally communicated to some
of its existing DataReader entities.

Name Description Values Default
<kind> See description below. KEEP_LAST, KEEP_ALL KEEP_LAST
<depth> UInt32 1000

If the <kind> is set to KEEP_LAST, then Fast RTPS will only attempt to keep the latest values of the instance and
discard the older ones.
If the <kind> is set to KEEP_ALL, then Fast RTPS will attempt to maintain and deliver all the values of the instance
to existing subscribers.
The setting of <depth> must be consistent with the ResourceLimitsQos <max_samples_per_instance>. For
these two QoS to be consistent, they must verify that depth <= max_samples_per_instance.

ResourceLimitsQos

It controls the resources that Fast RTPS can use in order to meet the requirements imposed by the application and other
QoS settings.

160 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

Name Description Val-
ues

De-
fault

<max_samples> It must verify that max_samples >=
max_samples_per_instance.

UInt32 5000

<max_instances> It defines the maximum number of instances. UInt32 10
<max_samples_per_instance>It must verify that HistoryQos depth <=

max_samples_per_instance.
UInt32 400

<allocated_samples> It controls the maximum number of samples to be stored. UInt32 100

14.8.5 QOS

The quality of service (QoS) handles the restrictions applied to the application.

<qos> <!-- readerQosPoliciesType -->
<durability>

<kind>VOLATILE</kind> <!-- string -->
</durability>

<liveliness>
<kind>AUTOMATIC</kind> <!-- string -->
<lease_duration>
<sec>1</sec>

</lease_duration>
<announcement_period>
<sec>1</sec>

</announcement_period>
</liveliness>

<reliability>
<kind>BEST_EFFORT</kind>

</reliability>

<partition>
<names>

<name>part1</name> <!-- string -->
<name>part2</name> <!-- string -->

</names>
</partition>

<deadline>
<period>

<sec>1</sec>
</period>

</deadline>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>

<disablePositiveAcks>
<enabled>true</enabled>

</disablePositiveAcks>
</qos>

14.8. Common 161

FastRTPS Documentation, Release 1.10.0

Name Description Values Default
<durability>It is defined in Setting the data durability

kind section.
VOLATILE,
TRANSIENT_LOCAL
TRANSIENT

VOLATILE

<liveliness>Defines the liveliness of the publisher. Liveliness
<reliability>It is defined in Reliability section. RELIABLE,

BEST_EFFORT
RELIABLE

<partition>It allows the introduction of a logical par-
tition concept inside the physical partition
induced by a domain.

List <string>

<deadline> It is defined in Deadline section. Deadline period as a
DurationType

c_TimeInfinite

<lifespan> It is defined in Lifespan section. Lifespan duration as
a DurationType

c_TimeInfinite

<disablePositiveAcks>It is defined in section Disable positive acks It is disabled by default
and duration is set to
c_TimeInfinite

14.8.6 Throughput Configuration

Throughput Configuration allows to limit the output bandwidth.

Name Description Val-
ues

Default

<bytesPerPeriod>Packet size in bytes that this controller will allow in a given period. UInt32 4294967295
<periodMillisecs>Window of time in which no more than <bytesPerPeriod>

bytes are allowed.
UInt32 0

14.8.7 Allocation Configuration

Allocation Configuration allows to control the allocation behavior of internal collections for which the number of
elements depends on the number of entities in the system.

For instance, there are collections inside a publisher which depend on the number of subscribers matching with it.

See Tuning allocations for detailed information on how to tune allocation related parameters.

Name Description Values Default
<initial> Number of elements for which space is initially allocated. UInt32 0
<maximum> Maximum number of elements for which space will be allocated. UInt32 0 (means no

limit)
<increment> Number of new elements that will be allocated when more space is

necessary.
UInt32 1

14.8.8 Submessage Size Limit

While some submessages have a fixed size (for example, SequenceNumber), others have a variable size depending on
the data they contain. Processing a submessage requires having a memory chunk large enough to contain a copy of the
submessage data. That is easy to handle when dealing with fixed variable submessages, as size is known and memory
can be allocated beforehand. For variable size submessages on the other hand, two different strategies can be used:

162 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

• Set a maximum size for the data container, which will be allocated beforehand during the participant’s setup.
This avoids dynamic allocations during message communication. However, any submessages with a larger
payload than the defined maximum will not fit in, and will therefore be discarded.

• Do not set any maximum size for the data container, and instead allocate the required memory dynamically
upon submessage arrival (according to the size declared on the submessage header). This allows for any size of
submessages, at the cost of dynamic allocations during message decoding.

14.8.9 History Memory Policy Configuration

Controls the allocation behavior of the change histories.

• PREALLOCATED: As the history gets larger, memory is allocated in chunks. Each chunk accommodates
a number of changes, and no more allocations are done until that chunk is full. Provides minimum number
of dynamic allocations at the cost of increased memory footprint. Maximum payload size of changes must
be appropriately configured, as history will not be able to accommodate changes with larger payload after the
allocation.

• PREALLOCATED_WITH_REALLOC: Like PREALLOCATED, but preallocated memory can be reallo-
cated to accommodate changes with larger payloads than the defined maximum.

• DYNAMIC: Every change gets a fresh new allocated memory of the correct size. It minimizes the memory
footprint, at the cost of increased number of dynamic allocations.

• DYNAMIC_REUSABLE: Like DYNAMIC, but instead of deallocating the memory when the change is re-
moved from the history, it is reused for a future change, reducing the amount of dynamic allocations. If the new
change has larger payload, it will be reallocated to accommodate the new size.

14.9 Example

In this section, there is a full XML example with all possible configuration. It can be used as a quick reference, but it
may not be valid due to incompatibility or exclusive properties. Don’t take it as a working example.

<profiles>
<transport_descriptors>

<transport_descriptor>
<transport_id>ExampleTransportId1</transport_id>
<type>TCPv4</type>
<sendBufferSize>8192</sendBufferSize>
<receiveBufferSize>8192</receiveBufferSize>
<TTL>250</TTL>
<maxMessageSize>16384</maxMessageSize>
<maxInitialPeersRange>100</maxInitialPeersRange>
<interfaceWhiteList>

<address>192.168.1.41</address>
<address>127.0.0.1</address>

</interfaceWhiteList>
<wan_addr>80.80.55.44</wan_addr>
<keep_alive_frequency_ms>5000</keep_alive_frequency_ms>
<keep_alive_timeout_ms>25000</keep_alive_timeout_ms>
<max_logical_port>200</max_logical_port>
<logical_port_range>20</logical_port_range>
<logical_port_increment>2</logical_port_increment>
<listening_ports>

<port>5100</port>
(continues on next page)

14.9. Example 163

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<port>5200</port>
</listening_ports>

</transport_descriptor>
<transport_descriptor>

<transport_id>ExampleTransportId2</transport_id>
<type>UDPv6</type>

</transport_descriptor>
<!-- SHM sample transport descriptor -->
<transport_descriptor>

<transport_id>SHM_SAMPLE_DESCRIPTOR</transport_id>
<type>SHM</type> <!-- REQUIRED -->
<maxMessageSize>524288</maxMessageSize> <!-- OPTIONAL uint32 valid of

→˓all transports-->
<segment_size>1048576</segment_size> <!-- OPTIONAL uint32 SHM only-->
<port_queue_capacity>1024</port_queue_capacity> <!-- OPTIONAL uint32

→˓SHM only-->
<healthy_check_timeout_ms>250</healthy_check_timeout_ms> <!--

→˓OPTIONAL uint32 SHM only-->
<rtps_dump_file>test_file.dump</rtps_dump_file> <!-- OPTIONAL string

→˓SHM only-->
</transport_descriptor>

</transport_descriptors>

<types>
<type> <!-- Types can be defined in its own type of tag or sharing the same

→˓tag -->
<enum name="MyAloneEnumType">

<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>
</type>
<type>

<enum name="MyEnumType">
<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>

<typedef name="MyAlias1" type="nonBasic" nonBasicTypeName="MyEnumType"/>

<typedef name="MyAlias2" type="int32" arrayDimensions="2,2"/>

<struct name="MyStruct1">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>

<union name="MyUnion1">
<discriminator type="byte"/>
<case>

<caseDiscriminator value="0"/>
<caseDiscriminator value="1"/>
<member name="first" type="int32"/>

</case>
<case>

<caseDiscriminator value="2"/>
(continues on next page)

164 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<member name="second" type="nonBasic" nonBasicTypeName="MyStruct"/
→˓>

</case>
<case>

<caseDiscriminator value="default"/>
<member name="third" type="int64"/>

</case>
</union>

<!-- All possible members struct type -->
<struct name="MyFullStruct">

<!-- Primitives & basic -->
<member name="my_bool" type="boolean"/>
<member name="my_byte" type="byte"/>
<member name="my_char" type="char8"/>
<member name="my_wchar" type="char16"/>
<member name="my_short" type="int16"/>
<member name="my_long" type="int32"/>
<member name="my_longlong" type="int64"/>
<member name="my_unsignedshort" type="uint16"/>
<member name="my_unsignedlong" type="uint32"/>
<member name="my_unsignedlonglong" type="uint64"/>
<member name="my_float" type="float32"/>
<member name="my_double" type="float64"/>
<member name="my_longdouble" type="float128"/>
<member name="my_string" type="string"/>
<member name="my_wstring" type="wstring"/>
<member name="my_boundedString" type="string" stringMaxLength="41925"/

→˓>
<member name="my_boundedWString" type="wstring" stringMaxLength="41925

→˓"/>

<!-- long long_array[2][3][4]; -->
<member name="long_array" arrayDimensions="2,3,4" type="int32"/>

<!-- map<long,map<long,long,2>,2> my_map_map; -->
<!-->
<typdefe name="my_map_inner" type="int32" key_type="int32"

→˓mapMaxLength="2"/>
<-->
<member name="my_map_map" type="nonBasic" nonBasicTypeName="my_map_

→˓inner" key_type="int32" mapMaxLength="2"/>

<!-- Complex types -->
<member name="my_other_struct" type="nonBasic" nonBasicTypeName=

→˓"OtherStruct"/>
</struct>

</type>
</types>

<participant profile_name="part_profile_example">
<rtps>

<name>Participant Name</name> <!-- String -->

<defaultUnicastLocatorList>
<locator>

<udpv4>
(continues on next page)

14.9. Example 165

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</defaultUnicastLocatorList>

<defaultMulticastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</defaultMulticastLocatorList>

<sendSocketBufferSize>8192</sendSocketBufferSize>

<listenSocketBufferSize>8192</listenSocketBufferSize>

<builtin>
<discovery_config>

<discoveryProtocol>NONE</discoveryProtocol>
(continues on next page)

166 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<EDP>SIMPLE</EDP>

<leaseDuration>
<sec>DURATION_INFINITY</sec>

</leaseDuration>

<leaseAnnouncement>
<sec>1</sec>
<nanosec>856000</nanosec>

</leaseAnnouncement>

<simpleEDP>
<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER>

</simpleEDP>

<staticEndpointXMLFilename>filename.xml</
→˓staticEndpointXMLFilename>

</discovery_config>

<use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol>

<domainId>4</domainId>

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</metatrafficUnicastLocatorList>

<metatrafficMulticastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>

(continues on next page)

14.9. Example 167

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<address>192.168.1.41</address>
</udpv4>

</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</metatrafficMulticastLocatorList>

<initialPeersList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</initialPeersList>

<readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</
→˓readerHistoryMemoryPolicy>

<writerHistoryMemoryPolicy>PREALLOCATED</writerHistoryMemoryPolicy>
</builtin>

<port>
<portBase>7400</portBase>
<domainIDGain>200</domainIDGain>
<participantIDGain>10</participantIDGain>

(continues on next page)

168 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<offsetd0>0</offsetd0>
<offsetd1>1</offsetd1>
<offsetd2>2</offsetd2>
<offsetd3>3</offsetd3>

</port>

<participantID>99</participantID>

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>

<userTransports>
<transport_id>TransportId1</transport_id>
<transport_id>TransportId2</transport_id>

</userTransports>

<useBuiltinTransports>false</useBuiltinTransports>

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

<publisher profile_name="pub_profile_example">
<topic>

<kind>WITH_KEY</kind>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
<historyQos>

<kind>KEEP_LAST</kind>
<depth>20</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples>
<max_instances>2</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>20</allocated_samples>

</resourceLimitsQos>
</topic>

<qos> <!-- writerQosPoliciesType -->
<durability>

<kind>VOLATILE</kind>
(continues on next page)

14.9. Example 169

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

</durability>
<liveliness>

<kind>AUTOMATIC</kind>
<lease_duration>

<sec>1</sec>
<nanosec>856000</nanosec>

</lease_duration>
<announcement_period>

<sec>1</sec>
<nanosec>856000</nanosec>

</announcement_period>
</liveliness>
<reliability>

<kind>BEST_EFFORT</kind>
<max_blocking_time>

<sec>1</sec>
<nanosec>856000</nanosec>

</max_blocking_time>
</reliability>
<partition>

<names>
<name>part1</name>
<name>part2</name>

</names>
</partition>
<publishMode>

<kind>ASYNCHRONOUS</kind>
</publishMode>
<disablePositiveAcks>

<enabled>true</enabled>
<duration>
<sec>1</sec>

</duration>
</disablePositiveAcks>

</qos>

<times>
<initialHeartbeatDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</initialHeartbeatDelay>
<heartbeatPeriod>

<sec>1</sec>
<nanosec>856000</nanosec>

</heartbeatPeriod>
<nackResponseDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</nackResponseDelay>
<nackSupressionDuration>

<sec>1</sec>
<nanosec>856000</nanosec>

</nackSupressionDuration>
</times>

<unicastLocatorList>
<locator>

(continues on next page)

170 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</multicastLocatorList>

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

(continues on next page)

14.9. Example 171

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>

<userDefinedID>45</userDefinedID>

<entityID>76</entityID>
</publisher>

<subscriber profile_name="sub_profile_example">
<topic>

<kind>WITH_KEY</kind>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
<historyQos>

<kind>KEEP_LAST</kind>
<depth>20</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples>
<max_instances>2</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>20</allocated_samples>

</resourceLimitsQos>
</topic>

<qos>
<durability>

<kind>PERSISTENT</kind>
</durability>
<liveliness>

<kind>MANUAL_BY_PARTICIPANT</kind>
<lease_duration>

<sec>1</sec>
<nanosec>856000</nanosec>

</lease_duration>
<announcement_period>

<sec>1</sec>
<nanosec>856000</nanosec>

</announcement_period>
</liveliness>
<reliability>

<kind>BEST_EFFORT</kind>
<max_blocking_time>

<sec>1</sec>
<nanosec>856000</nanosec>

(continues on next page)

172 Chapter 14. XML profiles

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

</max_blocking_time>
</reliability>
<partition>

<names>
<name>part1</name>
<name>part2</name>

</names>
</partition>

</qos>

<times>
<initialAcknackDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</initialAcknackDelay>
<heartbeatResponseDelay>

<sec>1</sec>
<nanosec>856000</nanosec>

</heartbeatResponseDelay>
</times>

<unicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>
<locator>

<tcpv4>
(continues on next page)

14.9. Example 173

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

<!-- Both physical and logical (port), like TCP -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
</locator>

</multicastLocatorList>

<expectsInlineQos>true</expectsInlineQos>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>

<userDefinedID>55</userDefinedID>

<entityID>66</entityID>
</subscriber>

174 Chapter 14. XML profiles

CHAPTER 15

Code generation using fastrtpsgen

eprosima Fast RTPS comes with a built-in code generation tool, fastrtpsgen, which eases the process of translating
an IDL specification of a data type to a working implementation of the methods needed to create topics, used by
publishers and subscribers, of that data type. This tool can be instructed to generate a sample application using this
data type, providing a Makefile to compile it on Linux and a Visual Studio project for Windows.

fastrtpsgen can be invoked by calling fastrtpsgen on Linux or fastrtpsgen.bat on Windows.

fastrtpsgen [-d <outputdir>] [-example <platform>] [-replace] [-typeobject] <IDLfile>
→˓[<IDLfile> ...]

The -replace argument is needed to replace the currently existing files in case the files for the IDL have been generated
previously.

When the -example argument is added, the tool will generate an automated example and the files to build it for the
platform currently invoked. The -help argument provides a list of currently supported Visual Studio versions and
platforms.

When -typeobject argument is used, the tool will generate additional files for TypeObject generation and management.
For more information about TypeObject go to Dynamic Topic Types.

15.1 Output

fastrtpsgen outputs the several files. Assuming the IDL file had the name “Mytype”, these files are:

• MyType.cxx/.h: Type definition.

• MyTypePublisher.cxx/.h: Definition of the Publisher as well as of a PublisherListener. The user must fill the
needed methods for his application.

• MyTypeSubscriber.cxx/.h: Definition of the Subscriber as well as of a SubscriberListener. The behavior of the
subscriber can be altered changing the methods implemented on these files.

• MyTypePubSubType.cxx/.h: Serialization and Deserialization code for the type. It also defines the getKey
method in case the topic uses keys.

175

FastRTPS Documentation, Release 1.10.0

• MyTypePubSubMain.cxx: The main file of the example application in case it is generated.

• Makefile or Visual Studio project files.

If -typeobject was used, MyType.cxx is modified to register the TypeObject representation in the TypeObjectFactory,
and these files will be generated too:

• MyTypeTypeObject.cxx/.h: TypeObject representation for MyType IDL.

15.2 Where to find fastrtpsgen

If you are using the binary distribution of eProsima Fast RTPS, fastrtpsgen is already provided for you. If you are
building from sources, you have to compile fastrtpsgen. You can find instructions in section Installation from Sources.

176 Chapter 15. Code generation using fastrtpsgen

CHAPTER 16

Typical Use-Cases

The use of Fast-RTPS is highly varied, allowing a large number of configurations depending on the scenario in which
the library is applied. This section provides configuration examples for the typical use cases arousing when dealing
with distributed systems. It is organized as follows:

• Fast-RTPS over WIFI. Presents the case of using Fast-RTPS in scenarios where discovery through multicast
communication is a challenge. To address this problem, the use of an initial peers list by which the address-port
pairs of the remote participants are defined is presented (See Initial Peers). Furthermore, it specifies how to
disable the multicast discovery mechanism (See Disabling multicast discovery).

• Wide Deployments. Describes the recommended configurations for using Fast-RTPS in environments with a high
number of deployed communicating agents. These are the use of a centralized server for the discovery phases
(See Server-Client Discovery), and the Fast-RTPS’ STATIC discovery mechanism for well known network
topologies (See Well Known Network Topologies).

• Fast-RTPS in ROS 2. Since Fast-RTPS is the default middleware implementation in the OSRF Robot Opera-
tion System 2 (ROS 2), this tutorial is an explanation of how to take full advantage of Fast-RTPS wide set of
capabilities in a ROS 2 project.

16.1 Fast-RTPS over WIFI

The RTPS standard defines the SIMPLE discovery as the default mechanism for discovering participants in the net-
work. One of the main features of this mechanism is the use of multicast communication in the Participant Discovery
Phase (PDP). This could be a problem in case the communication is not wired, i.e. WiFi communication, since multi-
cast is not as reliable over WiFi as it is over ethernet. Fast-RTPS’ solution to this challenge is to define the participants
with which a unicast communication is to be set, i.e an initial list of remote peers.

16.1.1 Initial Peers

According to the RTPS standard (Section 9.6.1.1), each participant must listen for incoming PDP discovery metatraffic
in two different ports, one linked with a multicast address, and another one linked to a unicast address. Fast-RTPS
allows for the configuration of an initial peers list which contains one or more such address-port pairs corresponding to

177

https://www.openrobotics.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

FastRTPS Documentation, Release 1.10.0

remote participants PDP discovery listening resources, so that the local participant will not only send its PDP traffic to
the default multicast address-port specified by its domain, but also to all the address-port pairs specified in the Initial
peers list.

A participant’s initial peers list contains the list of address-port pairs of all other participants with which it will com-
municate. It is a list of addresses that a participant will use in the unicast discovery mechanism, together or as an
alternative to multicast discovery. Therefore, this approach also applies to those scenarios in which multicast func-
tionality is not available.

According to the RTPS standard (Section 9.6.1.1), the participants’ discovery traffic unicast listening ports are calcu-
lated using the following equation: 7400 + 250 * domainID + 10 + 2 * participantID. Thus, if for example a participant
operates in Domain 0 (default domain) and its ID is 1, its discovery traffic unicast listening port would be: 7400 + 250
* 0 + 10 + 2 * 1 = 7412.

The following constitutes an example configuring an Initial Peers list with one peer on host 192.168.10.13 with par-
ticipant ID 1 in domain 0.

C++

Locator_t initial_peers_locator;
IPLocator::setIPv4(initial_peers_locator, "192.168.10.13");
initial_peers_locator.port = 7412;
participant_attr.rtps.builtin.initialPeersList.push_back(initial_peers_locator);

XML

<participant profile_name="initial_peers_example_profile" is_default_profile="true">
<rtps>

<builtin>
<initialPeersList>

<locator>
<udpv4>

<address>192.168.10.13</address>
<port>7412</port>

</udpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

16.1.2 Disabling multicast discovery

If all the peers are known beforehand, it is possible to disable the multicast meta traffic completely. This
is done using the configuration attribute metatrafficUnicastLocatorList. By defining a custom
metatrafficUnicastLocatorList, the default metatraffic multicast and unicast locators to be employed
by the participant are avoided, which prevents the participant from listening to any discovery data from multi-
cast sources. The local participant creates a meta traffic receiving resource per address-port pair specified in the
metatrafficUnicastLocatorList.

Consideration should be given to the assignment of the address-port pair in the
metatrafficUnicastLocatorList, avoiding the assignment of ports that are not available or do not
match the address-port listed in the publisher participant Initial Peers list.

178 Chapter 16. Typical Use-Cases

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

FastRTPS Documentation, Release 1.10.0

C++

Locator_t meta_unicast_locator;
IPLocator::setIPv4(meta_unicast_locator, "192.168.10.13");
meta_unicast_locator.port = 7412;
participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(meta_unicast_
→˓locator);

XML

<participant profile_name="initial_peers_multicast_avoidance" is_default_profile=
→˓"true" >

<rtps>
<builtin>

<!-- Choosing a specific unicast address -->
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.13</address>
<port>7412</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

16.2 Wide Deployments

Systems with large amounts of communication nodes might pose a challenge to Data Distribution Service (DDS) based
middleware implementations in terms of setup times, memory consumption, and network load. This is because, as
explained in Discovery, the Participant Discovery Phase (PDP) relies on meta traffic announcements sent to multicast
addresses so that all the participants in the network can acknowledge each other. This phase is followed by a Endpoint
Discovery Phase (EDP) where all the participants exchange information (using unicast addresses) about their publisher
and subscriber entities with the rest of the participants, so that matching between publishers and subscribers using the
same topic can occur. As the number of participants, publishers, and subscribers increases, the meta-traffic, as well
as the number of connections, increases exponentially, severely affecting the setup time and memory consumption.
Fast-RTPS provides extra features that expand the DDS standard to adapt it to wide deployment scenarios.

Feature Purpose
Server-
Client
Discovery
Mechanism

This feature is intended to substitute the standard SPDP and SEDP protocols with a discovery
based on a server-client architecture, where all the meta-traffic goes through a hub (server) to be
distributed throughout the network communication nodes.

Static Dis-
covery

With this feature, the user can manually specify which participant should communicate with
which one and through which address and port. Furthermore, the the user can specify which
publisher/subscriber matches with which one, thus eliminating all EDP meta traffic.

16.2. Wide Deployments 179

https://www.omg.org/spec/DDS/1.4/PDF

FastRTPS Documentation, Release 1.10.0

16.2.1 Server-Client Discovery

Considering a scenario in which a large number of communication agents, called participants in this case, are deployed,
an alternative to the default RTPS standard SIMPLE discovery mechanism may be used. For this purpose, Fast-
RTPS provides a client-server discovery mechanism, in which a server participant operates as the central point of
communication, that is the server collects and processes the metatraffic sent by the client participants, and distributes
the appropriate information among the rest of the clients.

Various discovery server use cases are presented below.

UDPv4 example setup

To configure the client-server discovery scenario, two types of participants are created: the server participant and the
client participant. Two parameters to be configured in this type of implementation are outlined:

• Prefix: This is the unique identifier of the server.

• Address-port pair: Specifies the IP address and port of the machine that implements the server. The port is a
random number that can be replaced with any other value. Consideration should be given to the assignment of
the address-port pair in the metatrafficUnicastLocatorList, avoiding the assignment of ports that
are not available. Thus using RTPS standard ports is discouraged.

180 Chapter 16. Typical Use-Cases

FastRTPS Documentation, Release 1.10.0

SERVER CLIENT
C++ C++

Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.
→˓168.10.57");
server_locator.port = 56542;

participant_attr.rtps.builtin.discovery_
→˓config.discoveryProtocol =
→˓DiscoveryProtocol_t::SERVER;
participant_attr.rtps.ReadguidPrefix("72.
→˓61.73.70.66.61.72.6d.74.65.73.74");
participant_attr.rtps.builtin.
→˓metatrafficUnicastLocatorList.push_
→˓back(server_locator);
participant_attr.rtps.builtin.discovery_
→˓config.discoveryServer_client_
→˓syncperiod = Duration_t(0, 250000000);

Locator_t remote_server_locator;
IPLocator::setIPv4(remote_server_locator,
→˓ "192.168.10.57");
remote_server_locator.port = 56542;

RemoteServerAttributes remote_server_
→˓attr;
remote_server_attr.ReadguidPrefix("72.61.
→˓73.70.66.61.72.6d.74.65.73.74");
remote_server_attr.
→˓metatrafficUnicastLocatorList.push_
→˓back(remote_server_locator);

participant_attr.rtps.builtin.discovery_
→˓config.discoveryProtocol =
→˓DiscoveryProtocol_t::CLIENT;
participant_attr.rtps.builtin.discovery_
→˓config.m_DiscoveryServers.push_
→˓back(remote_server_attr);

XML XML

<participant profile_name="UDP SERVER"
→˓is_default_profile="true">

<rtps>
<prefix>72.61.73.70.66.61.72.6d.

→˓74.65.73.74</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER

→˓</discoveryProtocol>
</discovery_config>

→˓<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.

→˓10.57</address>
<port>56542</

→˓port>
</udpv4>

</locator>
</

→˓metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

<participant profile_name="UDP CLIENT"
→˓is_default_profile="true">

<rtps>
<builtin>

<discovery_config>
<discoveryProtocol>CLIENT

→˓</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix=
→˓"72.61.73.70.66.61.72.6d.74.65.73.74">

→˓<metatrafficUnicastLocatorList>
<locator>

<udpv4>

→˓<address>192.168.10.57</address>

→˓<port>56542</port>
</udpv4>

</locator>
</

→˓metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>

16.2. Wide Deployments 181

FastRTPS Documentation, Release 1.10.0

UDPv4 redundancy example

The above example presents a single point of failure, that is, if the server fails there is no discovery. In order to prevent
this, several servers could be linked to a client. By doing this, a discovery failure only takes place if all servers fail,
which is a more unlikely event.

The following values have been chosen in order to assure each server has a unique Prefix and unicast address:

Prefix UDPv4 address
75.63.2D.73.76.72.63.6C.6E.74.2D.31192.168.10.57:56542
75.63.2D.73.76.72.63.6C.6E.74.2D.32192.168.10.60:56543

Note that several servers can share the same IP address but their port numbers should be different. Likewise, several
servers can share the same port if their IP addresses are different.

182 Chapter 16. Typical Use-Cases

FastRTPS Documentation, Release 1.10.0

SERVER CLIENT
C++ C++

Locator_t server_locator_1, server_
→˓locator_2;

IPLocator::setIPv4(server_locator_1,
→˓"192.168.10.57");
server_locator_1.port = 56542;
IPLocator::setIPv4(server_locator_2,
→˓"192.168.10.60");
server_locator_2.port = 56543;

ParticipantAttributes participant_attr_1,
→˓ participant_attr_2;

participant_attr_1.rtps.builtin.
→˓discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::SERVER;
participant_attr_1.rtps.ReadguidPrefix(
→˓"75.63.2D.73.76.72.63.6C.6E.74.2D.31");
participant_attr_1.rtps.builtin.
→˓metatrafficUnicastLocatorList.push_
→˓back(server_locator_1);

participant_attr_2.rtps.builtin.
→˓discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::SERVER;
participant_attr_2.rtps.ReadguidPrefix(
→˓"75.63.2D.73.76.72.63.6C.6E.74.2D.32");
participant_attr_2.rtps.builtin.
→˓metatrafficUnicastLocatorList.push_
→˓back(server_locator_2);

Locator_t remote_server_locator_1,
→˓remote_server_locator_2;

IPLocator::setIPv4(remote_server_locator_
→˓1, "192.168.10.57");
remote_server_locator.port = 56542;
IPLocator::setIPv4(remote_server_locator_
→˓2, "192.168.10.60");
server_locator.port = 56543;

RemoteServerAttributes remote_server_
→˓attr_1, remote_server_attr_2;

remote_server_attr_1.ReadguidPrefix("75.
→˓63.2D.73.76.72.63.6C.6E.74.2D.31");
remote_server_attr_1.
→˓metatrafficUnicastLocatorList.push_
→˓back(remote_server_locator_1);
remote_server_attr_2.ReadguidPrefix("75.
→˓63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr_2.
→˓metatrafficUnicastLocatorList.push_
→˓back(remote_server_locator_2);

participant_attr.rtps.builtin.discovery_
→˓config.discoveryProtocol =
→˓DiscoveryProtocol_t::CLIENT;
participant_attr.rtps.builtin.discovery_
→˓config.m_DiscoveryServers.push_
→˓back(remote_server_attr_1);
participant_attr.rtps.builtin.discovery_
→˓config.m_DiscoveryServers.push_
→˓back(remote_server_attr_2);

XML XML

<participant profile_name="UDP SERVER 1">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.
→˓6E.74.2D.31</prefix>

<builtin>
<discovery_config>

<discoveryProtocol>SERVER
→˓</discoveryProtocol>

</discovery_config>

→˓<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.

→˓10.57</address>
<port>56542</

→˓port>
</udpv4>

</locator>
</

→˓metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

<participant profile_name="UDP SERVER 2">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.
→˓6E.74.2D.32</prefix>

<builtin>
<discovery_config>

<discoveryProtocol>SERVER
→˓</discoveryProtocol>

</discovery_config>

→˓<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.

→˓10.60</address>
<port>56543</

→˓port>
</udpv4>

</locator>
</

→˓metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

<participant profile_name="UDP CLIENT">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>CLIENT
→˓</discoveryProtocol>

<discoveryServersList>
<RemoteServer prefix=

→˓"75.63.2D.73.76.72.63.6C.6E.74.2D.31">

→˓<metatrafficUnicastLocatorList>
<locator>

<udpv4>

→˓<address>192.168.10.57</address>

→˓<port>56542</port>
</udpv4>

</locator>
</

→˓metatrafficUnicastLocatorList>
</RemoteServer>
<RemoteServer prefix=

→˓"75.63.2D.73.76.72.63.6C.6E.74.2D.32">

→˓<metatrafficUnicastLocatorList>
<locator>

<udpv4>

→˓<address>192.168.10.60</address>

→˓<port>56543</port>
</udpv4>

</locator>
</

→˓metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>

16.2. Wide Deployments 183

FastRTPS Documentation, Release 1.10.0

UDPv4 persistency example

All participants keeps record of all endpoints discovered (other participants, subscribers or publishers). Different kind
of participants populate this record with different procedures:

• clients receive this information from its servers.

• servers receive this information from its clients.

Given that servers used to have many clients associated, this is a lengthy process. In case of server failure we may be
interested in speed up this process when the server restarts.

Keep the discovery information in a file synchronize with the server’s record fulfills the goal. In order to enable this
we must just specify the discovery protocol as BACKUP.

Once the server is created it generates a server-<GUIDPREFIX>.db (exempli gratia server-73-65-72-76-65-72-63-
6C-69-65-6E-74.db) on its process working directory.

In order to start afresh, that is without deserialize any discovery info, the old backup file must be removed or renamed
before launching the server.

UDPv4 partitioning using servers

Server association can be seen as another isolation mechanism besides domains and partitions. Clients that do not
share a server cannot see each other and belong to isolated server networks. In order to connect server isolated
networks we can:

1. Connect each client to both servers.

2. Connect one server to the other.

3. Create a new server linked to the servers to which the clients are connected.

Options 1 and 2 can only be implemented by modifying attributes or XML configuration files beforehand. In this
regard they match the domain and partition strategy. Option 3 can be implemented at runtime, that is, when the
isolated networks are already up and running.

Option 1

Connect each client to both servers. This case matches the redundancy use case already introduced.

184 Chapter 16. Typical Use-Cases

FastRTPS Documentation, Release 1.10.0

Option 2

Connect one server to the other. In this case we consider two servers, each one managing an isolated network:

NetworkPrefix UDPv4 address
A 75.63.2D.73.76.72.63.6C.6E.74.2D.31192.168.10.60:56543
B 75.63.2D.73.76.72.63.6C.6E.74.2D.32192.168.10.57:56542

In order to communicate both networks we can setup server A to act as client of server B as follows:

16.2. Wide Deployments 185

FastRTPS Documentation, Release 1.10.0

C++

Locator_t server_locator, remote_server_locator;

IPLocator::setIPv4(server_locator, "192.168.10.60");
server_locator.port = 56543;
IPLocator::setIPv4(remote_server_locator, "192.168.10.57");
remote_server_locator.port = 56542;

RemoteServerAttributes remote_server_attr;
remote_server_attr.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr.metatrafficUnicastLocatorList.push_back(remote_server_locator);

participant_attr.rtps.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.31");
participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(server_
→˓locator);

participant_attr.rtps.builtin.discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::SERVER;
participant_attr.rtps.builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr);

XML

<participant profile_name="UDP SERVER A">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.31</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.60</address>
<port>56543</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>
</rtps>

</participant>

186 Chapter 16. Typical Use-Cases

FastRTPS Documentation, Release 1.10.0

Option 3

Create a new server linked to the servers to which the clients are connected. In this case we have two isolated networks
A and B, which may be up and running, and join them with a server C.

ServerPrefix UDPv4 address
A 75.63.2D.73.76.72.63.6C.6E.74.2D.31192.168.10.60:56543
B 75.63.2D.73.76.72.63.6C.6E.74.2D.32192.168.10.57:56542
C 75.63.2D.73.76.72.63.6C.6E.74.2D.33192.168.10.54:56541

In order to communicate both networks we can setup server C to act as client of servers A and B as follows:

16.2. Wide Deployments 187

FastRTPS Documentation, Release 1.10.0

C++

Locator_t server_locator, remote_server_locator_A, remote_server_locator_B;

IPLocator::setIPv4(server_locator, "192.168.10.54");
server_locator.port = 56541;
IPLocator::setIPv4(remote_server_locator_A, "192.168.10.60");
remote_server_locator_A.port = 56543;
IPLocator::setIPv4(remote_server_locator_B, "192.168.10.57");
remote_server_locator_B.port = 56542;

RemoteServerAttributes remote_server_attr_A, remote_server_attr_B;
remote_server_attr_A.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.31");
remote_server_attr_A.metatrafficUnicastLocatorList.push_back(remote_server_locator_
→˓A);
remote_server_attr_B.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr_B.metatrafficUnicastLocatorList.push_back(remote_server_locator_
→˓B);

participant_attr.rtps.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.33");
participant_attr.rtps.builtin.metatrafficUnicastLocatorList.push_back(server_
→˓locator);

participant_attr.rtps.builtin.discovery_config.discoveryProtocol =
→˓DiscoveryProtocol_t::SERVER;
participant_attr.rtps.builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr_A);
participant_attr.rtps.builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr_B);

XML

<participant profile_name="UDP SERVER C">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.33</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>
<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.31">

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.10.60</address>
<port>56543</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.54</address>
<port>56541</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>
</rtps>

</participant>

188 Chapter 16. Typical Use-Cases

FastRTPS Documentation, Release 1.10.0

16.2.2 Well Known Network Topologies

It is often the case in industrial deployments, such as productions lines, that the entire network topology (hosts,
IP addresses, etc.) is known beforehand. Such scenarios are perfect candidates for Fast-RTPS STATIC discovery
mechanism, which drastically reduces the middleware setup time (time until all the entities are ready for information
exchange), while at the same time limits the connections to those strictly necessary. As explained in the Discovery
section, all Fast-RTPS discovery mechanisms consist of two steps: PDP and EDP.

Peer-to-Peer Participant Discovery Phase

By default, Fast-RTPS uses SPDP protocol for the PDP phase. This entails the participants sending periodic PDP
announcements over a well known multicast addresses, using IP ports calculated from the domain. For large deploy-
ments, this can result in quite some meta traffic, since whenever a participant receives a PDP message via multicast,
it replies to the remote participant using an address and port specified in the message. In this scenario the number of
PDP connections is N * (N - 1), with N being the number of participants in the network.

However, it is often the case that not all the participants need to be aware of all the rest of the remote participants
present in the network. For limiting all this PDP meta traffic, Fast-RTPS participants can be configured to send their
PDP announcements only to the remote participants to which they are required to connect. This is done by specifying
a list of peers as a set of IP address-port pairs, and by disabling the participant multicast announcements. Use-case
Fast-RTPS over WIFI provides a detailed explanation on how to configure Fast-RTPS for such case.

STATIC Endpoint Discovery Phase

As explained in STATIC Endpoints Discovery Settings, the EDP meta traffic can be completely avoided by specifying
the EDP discovery using XML files. This way, the user can manually configure which publisher/subscriber matches
with which one, so they can start sharing user data right away. To do that, a STATIC discovery XML file must be
supplied to the local entity describing the configuration of the remote entity. In this example, a publisher in topic
HelloWorldTopic from participant HelloWorldPublisher is matched with a subscriber from participant
HelloWorldSubscriber. A fully functional example implementing STATIC EDP is STATIC EDP example.

Create STATIC discovery XML files

HelloWorldPublisher.xml HelloWorldSubscriber.xml

<staticdiscovery>
<participant>

<name>HelloWorldPublisher</
→˓name>

<writer>
<userId>1</userId>
<entityId>2</entityId>
<topicName>

→˓HelloWorldTopic</topicName>
<topicDataType>

→˓HelloWorld</topicDataType>
</writer>

</participant>
</staticdiscovery>

<staticdiscovery>
<participant>

<name>HelloWorldSubscriber</
→˓name>

<reader>
<userId>3</userId>
<entityId>4</entityId>
<topicName>

→˓HelloWorldTopic</topicName>
<topicDataType>

→˓HelloWorld</topicDataType>
</reader>

</participant>
</staticdiscovery>

16.2. Wide Deployments 189

https://github.com/eProsima/Fast-RTPS/blob/master/examples/C%2B%2B/StaticHelloWorldExample

FastRTPS Documentation, Release 1.10.0

Create entities and load STATIC discovery XML files

When creating the entities, the local publisher/subscriber attributes must match those defined in the STATIC discovery
XML file loaded by the remote entity.

190 Chapter 16. Typical Use-Cases

FastRTPS Documentation, Release 1.10.0

PUBLISHER SUBSCRIBER
C++ C++

// Participant attributes
participant_attr.rtps.setName(
→˓"HelloWorldPublisher");
participant_attr.rtps.builtin.
→˓discovery_config.use_SIMPLE_
→˓EndpointDiscoveryProtocol = false;
participant_attr.rtps.builtin.
→˓discovery_config.use_STATIC_
→˓EndpointDiscoveryProtocol = true;
participant_attr.rtps.builtin.
→˓discovery_config.
→˓setStaticEndpointXMLFilename(
→˓"HelloWorldSubscriber.xml");

// Publisher attributes
publisher_attr.topic.topicName =
→˓"HelloWorldTopic";
publisher_attr.topic.topicDataType
→˓= "HelloWorld";
publisher_attr.setUserDefinedID(1);
publisher_attr.setEntityID(2);

// Participant attributes
participant_attr.rtps.setName(
→˓"HelloWorldSubscriber");
participant_attr.rtps.builtin.
→˓discovery_config.use_SIMPLE_
→˓EndpointDiscoveryProtocol = false;
participant_attr.rtps.builtin.
→˓discovery_config.use_STATIC_
→˓EndpointDiscoveryProtocol = true;
participant_attr.rtps.builtin.
→˓discovery_config.
→˓setStaticEndpointXMLFilename(
→˓"HelloWorldPublisher.xml");

// Subscriber attributes
subscriber_attr.topic.topicName =
→˓"HelloWorldTopic";
subscriber_attr.topic.topicDataType
→˓= "HelloWorld";
subscriber_attr.setUserDefinedID(3);
subscriber_attr.setEntityID(4);

XML XML

<participant profile_name=
→˓"participant_profile_static_pub">

<rtps>
<name>HelloWorldPublisher</

→˓name>
<builtin>

<discovery_config>
<EDP>STATIC</EDP>

→˓<staticEndpointXMLFilename>
→˓HelloWorldSubscriber.xml</
→˓staticEndpointXMLFilename>

</discovery_config>
</builtin>

</rtps>
</participant>
<!-->STATIC_DISCOVERY_USE_CASE_PUB<-
→˓->
<participant profile_name=
→˓"participant_profile_static_pub">

<rtps>
<name>HelloWorldPublisher</

→˓name>
<builtin>

<discovery_config>
<EDP>STATIC</EDP>

→˓<staticEndpointXMLFilename>
→˓HelloWorldSubscriber.xml</
→˓staticEndpointXMLFilename>

</discovery_config>
</builtin>

</rtps>
</participant>

<publisher profile_name="uc_
→˓publisher_xml_conf_static_
→˓discovery">

<topic>
<name>HelloWorldTopic</name>
<dataType>HelloWorld</

→˓dataType>
</topic>
<userDefinedID>1</userDefinedID>
<entityID>2</entityID>

</publisher>

<participant profile_name=
→˓"participant_profile_static_sub">

<rtps>
<name>HelloWorldSubscriber</

→˓name>
<builtin>

<discovery_config>

→˓<staticEndpointXMLFilename>
→˓HelloWorldPublisher.xml</
→˓staticEndpointXMLFilename>

</discovery_config>
</builtin>

</rtps>
</participant>

<subscriber profile_name="uc_
→˓subscriber_xml_conf_static_
→˓discovery">

<topic>
<name>HelloWorldTopic</name>
<dataType>HelloWorld</

→˓dataType>
</topic>
<userDefinedID>3</userDefinedID>
<entityID>4</entityID>

</subscriber>

16.2. Wide Deployments 191

FastRTPS Documentation, Release 1.10.0

16.3 Fast-RTPS in ROS 2

Fast-RTPS is the default middleware implementation in the Open Source Robotic Fundation (OSRF) Robot Operating
System ROS 2. This tutorial is an explanation of how to take full advantage of Fast-RTPS wide set of capabilities in a
ROS 2 project.

The interface between the ROS2 stack and Fast-RTPS is provided by a ROS 2 package rmw_fastrtps. This
package is available in all ROS 2 distributions, both from binaries and from sources. rmw_fastrtps ac-
tually provides not one but two different ROS 2 middleware implementations, both of them using Fast-RTPS
as middleware layer: rmw_fastrtps_cpp and rmw_fastrtps_dynamic_cpp. The main difference be-
tween the two is that rmw_fastrtps_dynamic_cpp uses introspection type support at run time to decide
on the serialization/deserialization mechanism, while rmw_fastrtps_cpp uses its own type support, which
generates the mapping for each message type at build time. The default ROS 2 RMW implementation is
rmw_fastrtps_cpp. However, it is still possible to select rmw_fastrtps_dynamic_cpp using the envi-
ronment variable RMW_IMPLEMENTATION:

1. Exporting RMW_IMPLEMENTATION environment variable:

export RMW_IMPLEMENTATION=rmw_fastrtps_dynamic_cpp

2. When launching your ROS 2 application:

RMW_IMPLEMENTATION=rmw_fastrtps_dynamic_cpp ros2 run <package> <application>

16.3.1 Configuring Fast-RTPS with XML files

As described in XML profiles section, there are two possibilities for providing Fast-RTPS with XML configuration
files:

• Recommended: Define the location of the XML configuration file with environment variable
FASTRTPS_DEFAULT_PROFILES_FILE.

export FASTRTPS_DEFAULT_PROFILES_FILE=<path_to_xml_file>

• Alternative: Create a DEFAULT_FASTRTPS_PROFILES.xml and place it in the same directory as the applica-
tion executable.

Default profiles

Under ROS 2, the entity creation does not allow for selecting different profiles from the XML. To work around this
issue, the profiles can be marked with an attribute is_default_profile="true", so when an entity of that type
is created, it will automatically load that profile. The mapping between ROS 2 entities and Fast-RTPS entities is:

ROS entity Fast-RTPS entity
Node Participant
Publisher Publisher
Subscription Subscriber
Service Publisher + Subscriber
Client Publisher + Subscriber

For example, a profile for a ROS 2 Node would be specified as:

192 Chapter 16. Typical Use-Cases

https://www.openrobotics.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://github.com/ros2/rmw_fastrtps

FastRTPS Documentation, Release 1.10.0

XML

<participant profile_name="participant_profile_ros2" is_default_profile="true">
<rtps>

<name>profile_for_ros2_node</name>
</rtps>

</participant>

Configure Publication Mode and History Memory Policy

By default, rmw_fastrtps sets some of the Fast-RTPS configurable parameters, ignoring whatever configuration
is provided in the XML file. Said parameters, and their default values under ROS 2, are:

Parame-
ter

Description Default ROS 2 value

History
memory
policy

Fast-RTPS preallocates memory for the publisher and subscriber histories.
When those histories fill up, a reallocation occurs to reserve more memory.

PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Publi-
cation
mode

User calls to publication method add the messages in a queue that is man-
aged in a different thread, meaning that the user thread is available right
after the call to send data.

ASYNCHRONOUS_PUBLISH_MODE

However, it is possible to fully configure Fast-RTPS (including the history memory policy and the publication mode)
using an XML file in combination with environment variable RMW_FASTRTPS_USE_QOS_FROM_XML.

export FASTRTPS_DEFAULT_PROFILES_FILE=<path_to_xml_file>
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run <package> <application>

16.3.2 Example

The following example uses the ROS 2 talker/listener demo, configuring Fast-RTPS to publish synchronously, and to
have a dynamically allocated publisher and subscriber histories.

1. Create a XML file ros_example.xml and save it in path/to/xml/

XML

<publisher profile_name="ros2_publisher_profile" is_default_profile="true">
<qos>

<publishMode>
<kind>SYNCHRONOUS</kind>

</publishMode>
</qos>
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

</publisher>

<subscriber profile_name="ros2_subscription_profile" is_default_profile=
→˓"true">

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</subscriber>

16.3. Fast-RTPS in ROS 2 193

FastRTPS Documentation, Release 1.10.0

2. Open one terminal and run:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
export FASTRTPS_DEFAULT_PROFILES_FILE=path/to/xml/ros_example.xml
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run demo_nodes_cpp talker

3. Open one terminal and run:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
export FASTRTPS_DEFAULT_PROFILES_FILE=path/to/xml/ros_example.xml
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run demo_nodes_cpp listener

194 Chapter 16. Typical Use-Cases

CHAPTER 17

Introduction

eProsima FASTRTPSGEN is a Java application that generates source code using the data types defined in an IDL file.
This generated source code can be used in your applications in order to publish and subscribe to a topic of your defined
type.

To declare your structured data, you have to use IDL (Interface Definition Language) format. IDL is a specification
language, made by OMG (Object Management Group), which describes an interface in a language-independent way,
enabling communication between software components that do not share the same language.

eProsima FASTRTPSGEN is a tool that reads IDL files and parses a subset of the OMG IDL specification to generate
serialization source code. This subset includes the data type descriptions included in Defining a data type via IDL.
The rest of the file content is ignored.

eProsima FASTRTPSGEN generated source code uses Fast CDR: a C++11 library that provides a serialization mech-
anism. In this case, as indicated by the RTPS specification document, the serialization mechanism used is CDR.
The standard CDR (Common Data Representation) is a transfer syntax low-level representation for transfer between
agents, mapping from data types defined in OMG IDL to byte streams.

One of the main features of eProsima FASTRTPSGEN is to avoid the users the trouble of knowing anything about
serialization or deserialization procedures. It also provides an initial implementation of a publisher and a subscriber
using eProsima RTPS library.

17.1 Compile

In order to compile fastrtpsgen you first need to have gradle and java JDK installed (please, check the JDK recom-
mended version for the gradle version you have installed).

To compile fastrtpsgen java application, you will need to download its source code from the Fast-RPTS-Gen repository
and with --recursive option and compile it calling gradle assemble. For more details see Compile.

> git clone --recursive https://github.com/eProsima/Fast-RTPS-Gen.git
> cd Fast-RTPS-Gen
> gradle assemble

195

https://github.com/eProsima/Fast-CDR
https://gradle.org/install
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/eProsima/Fast-RTPS-Gen

FastRTPS Documentation, Release 1.10.0

The generated java application can be found at share/fastrtps and more user friendly scripts at scripts
folders. If you want to make these scripts available from anywhere you can add the scripts folder path to your
PATH environment variable.

196 Chapter 17. Introduction

CHAPTER 18

Execution and IDL Definition

18.1 Building publisher/subscriber code

This section guides you through the usage of this Java application and briefly describes the generated files.

Once you added scripts folder to your PATH, the Java application can be executed using the following scripts
depending on if you are on Windows or Linux:

> fastrtpsgen.bat
$ fastrtpsgen

In case you didn’t modified your PATH you can find these scripts in your <fastrtpsgen_directory>/
scripts folder.

The expected argument list of the application is:

fastrtpsgen [<options>] <IDL file> [<IDL file> ...]

Where the option choices are:

197

FastRTPS Documentation, Release 1.10.0

Option Description
-help Shows the help information.
-version Shows the current version of eProsima FASTRTPSGEN.
-d <direc-
tory>

Sets the output directory where the generated files are created.

-I <direc-
tory>

Add directory to preprocessor include paths.

-t <direc-
tory>

Sets a specific directory as a temporary directory.

-example
<platform>

Generates an example and a solution to compile the generated source code for a specific
platform. The help command shows the supported platforms.

-replace Replaces the generated source code files even if they exist.
-ppDisable Disables the preprocessor.
-ppPath Specifies the preprocessor path.
-typeobject Generates TypeObject files for the IDL provided and modifies MyType constructor to

register the TypeObject representation into the factory.

For more information about TypeObject representation read Dynamic Topic Types.

18.2 Defining a data type via IDL

The following table shows the basic IDL types supported by fastrtpsgen and how they are mapped to C++11.

IDL C++11
char char
octet uint8_t
short int16_t
unsigned short uint16_t
long int32_t
unsigned long uint32_t
long long int64_t
unsigned long long uint64_t
float float
double double
long double long double
boolean bool
string std::string

18.2.1 Arrays

fastrtpsgen supports unidimensional and multidimensional arrays. Arrays are always mapped to std::array containers.
The following table shows the array types supported and how they map.

198 Chapter 18. Execution and IDL Definition

FastRTPS Documentation, Release 1.10.0

IDL C++11
char a[5] std::array<char,5> a
octet a[5] std::array<uint8_t,5> a
short a[5] std::array<int16_t,5> a
unsigned short a[5] std::array<uint16_t,5> a
long a[5] std::array<int32_t,5> a
unsigned long a[5] std::array<uint32_t,5> a
long long a[5] std::array<int64_t,5> a
unsigned long long a[5] std::array<uint64_t,5> a
float a[5] std::array<float,5> a
double a[5] std::array<double,5> a

18.2.2 Sequences

fastrtpsgen supports sequences, which map into the STD vector container. The following table represents how the map
between IDL and C++11 is handled.

IDL C++11
sequence<char> std::vector<char>
sequence<octet> std::vector<uint8_t>
sequence<short> std::vector<int16_t>
sequence<unsigned short> std::vector<uint16_t>
sequence<long> std::vector<int32_t>
sequence<unsigned long> std::vector<uint32_t>
sequence<long long> std::vector<int64_t>
sequence<unsigned long long> std::vector<uint64_t>
sequence<float> std::vector<float>
sequence<double> std::vector<double>

18.2.3 Maps

fastrtpsgen supports maps, which are equivalent to the STD map container. The equivalence between types is handled
in the same way as for sequences.

IDL C++11
map<char, unsigned long long> std::map<char, uint64_T>

18.2.4 Structures

You can define an IDL structure with a set of members with multiple types. It will be converted into a C++ class with
each member mapped as an attribute plus methods to get and set each member.

The following IDL structure:

struct Structure
{

octet octet_value;
long long_value;

(continues on next page)

18.2. Defining a data type via IDL 199

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

string string_value;
};

Would be converted to:

class Structure
{
public:

Structure();
~Structure();
Structure(const Structure &x);
Structure(Structure &&x);
Structure& operator=(const Structure &x);
Structure& operator=(Structure &&x);

void octet_value(uint8_t _octet_value);
uint8_t octet_value() const;
uint8_t& octet_value();
void long_value(int64_t _long_value);
int64_t long_value() const;
int64_t& long_value();
void string_value(const std::string

&_string_value);
void string_value(std::string &&_string_value);
const std::string& string_value() const;
std::string& string_value();

private:
uint8_t m_octet_value;
int64_t m_long_value;
std::string m_string_value;

};

Structures can inherit from other structures, extending their member set.

struct ParentStruct
{

octet parent_member;
};

struct ChildStruct : ParentStruct
{

long child_member;
};

In this case, the resulting C++ code will be:

class ParentStruct
{

...
};

class ChildStruct : public ParentStruct
{

...
};

200 Chapter 18. Execution and IDL Definition

FastRTPS Documentation, Release 1.10.0

18.2.5 Unions

In IDL, a union is defined as a sequence of members with their own types and a discriminant that specifies which
member is in use. An IDL union type is mapped as a C++ class with access functions to the union members and the
discriminant.

The following IDL union:

union Union switch(long)
{

case 1:
octet octet_value;

case 2:
long long_value;

case 3:
string string_value;

};

Would be converted to:

class Union
{
public:

Union();
~Union();
Union(const Union &x);
Union(Union &&x);
Union& operator=(const Union &x);
Union& operator=(Union &&x);

void d(int32t __d);
int32_t _d() const;
int32_t& _d();

void octet_value(uint8_t _octet_value);
uint8_t octet_value() const;
uint8_t& octet_value();
void long_value(int64_t _long_value);
int64_t long_value() const;
int64_t& long_value();
void string_value(const std::string

&_string_value);
void string_value(std:: string &&_string_value);
const std::string& string_value() const;
std::string& string_value();

private:
int32_t m__d;
uint8_t m_octet_value;
int64_t m_long_value;
std::string m_string_value;

};

18.2.6 Bitsets

Bitsets are a special kind of structure, which encloses a set of bits. A bitset can represent up to 64 bits. Each member
is defined as bitfield and eases the access to a part of the bitset.

18.2. Defining a data type via IDL 201

FastRTPS Documentation, Release 1.10.0

For example:

bitset MyBitset
{

bitfield<3> a;
bitfield<10> b;
bitfield<12, int> c;

};

The type MyBitset will store a total of 25 bits (3 + 10 + 12) and will require 32 bits in memory (lowest primitive type
to store the bitset’s size).

• The bitfield ‘a’ allows us to access to the first 3 bits (0..2).

• The bitfield ‘b’ allows us to access to the next 10 bits (3..12).

• The bitfield ‘c’ allows us to access to the next 12 bits (13..24).

The resulting C++ code will be similar to:

class MyBitset
{
public:

void a(char _a);
char a() const;

void b(uint16_t _b);
uint16_t b() const;

void c(int32_t _c);
int32_t c() const;

private:
std::bitset<25> m_bitset;

};

Internally is stored as a std::bitset. For each bitfield, getter and setter methods are generated with the smaller possible
primitive unsigned type to access it. In the case of bitfield ‘c’, the user has established that this accessing type will be
int, so the generated code uses int32_t instead of automatically use uint16_t.

Bitsets can inherit from other bitsets, extending their member set.

bitset ParentBitset
{

bitfield<3> parent_member;
};

bitset ChildBitset : ParentBitset
{

bitfield<10> child_member;
};

In this case, the resulting C++ code will be:

class ParentBitset
{

...
};

class ChildBitset : public ParentBitset

(continues on next page)

202 Chapter 18. Execution and IDL Definition

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

{
...

};

Note that in this case, ChildBitset will have two std::bitset members, one belonging to ParentBitset and the
other belonging to ChildBitset.

18.2.7 Enumerations

An enumeration in IDL format is a collection of identifiers that have a numeric value associated. An IDL enumeration
type is mapped directly to the corresponding C++11 enumeration definition.

The following IDL enumeration:

enum Enumeration
{

RED,
GREEN,
BLUE

};

Would be converted to:

enum Enumeration : uint32_t
{

RED,
GREEN,
BLUE

};

18.2.8 Bitmasks

Bitmasks are a special kind of Enumeration to manage masks of bits. It allows defining bit masks based on their
position.

The following IDL bitmask:

@bit_bound(8)
bitmask MyBitMask
{

@position(0) flag0,
@position(1) flag1,
@position(4) flag4,
@position(6) flag6,
flag7

};

Would be converted to:

enum MyBitMask : uint8_t
{

flag0 = 0x01 << 0,
flag1 = 0x01 << 1,
flag4 = 0x01 << 4,

(continues on next page)

18.2. Defining a data type via IDL 203

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

flag6 = 0x01 << 6,
flag7 = 0x01 << 7

};

The annotation bit_bound defines the width of the associated enumeration. It must be a positive number between 1
and 64. If omitted, it will be 32 bits. For each flag, the user can use the annotation position to define the position of
the flag. If omitted, it will be auto incremented from the last defined flag, starting at 0.

18.2.9 Keyed Types

In order to use keyed topics, the user should define some key members inside the structure. This is achieved by writing
“@Key” before the members of the structure you want to use as keys. For example in the following IDL file the id and
type field would be the keys:

struct MyType
{

@Key long id;
@Key string type;
long positionX;
long positionY;

};

fastrtpsgen automatically detects these tags and correctly generates the serialization methods for the key generation
function in TopicDataType (getKey). This function will obtain the 128-bit MD5 digest of the big-endian serialization
of the Key Members.

18.2.10 Including other IDL files

You can include another IDL files in yours in order to use data types defined in them. fastrtpsgen uses a C/C++
preprocessor for this purpose, and you can use #include directive to include an IDL file.

#include "OtherFile.idl"
#include <AnotherFile.idl>

If fastrtpsgen doesn’t find a C/C++ preprocessor in default system paths, you could specify the preprocessor path using
parameter -ppPath. If you want to disable the usage of the preprocessor, you could use the parameter -ppDisable.

18.2.11 Annotations

The application allows the user to define and use their own annotations as defined in the IDL 4.2 standard. User
annotations will be passed to TypeObject generated code if the -typeobject argument was used.

@annotation MyAnnotation
{

long value;
string name;

};

Additionally, the following standard annotations are builtin (recognized and passed to TypeObject when unimple-
mented).

204 Chapter 18. Execution and IDL Definition

FastRTPS Documentation, Release 1.10.0

Annotation Implemented behavior
@id Unimplemented.
@autoid Unimplemented.
@optional Unimplemented.
@extensibility Unimplemented.
@final Unimplemented.
@appendable Unimplemented.
@mutable Unimplemented.
@position Used by bitmasks.
@value Allows to set a constant value to any element.
@key Alias for eProsima’s @Key annotation.
@must_understand Unimplemented.
@default_literal Allows selecting one member as the default within a collection.
@default Allows specifying the default value of the annotated element.
@range Unimplemented.
@min Unimplemented.
@max Unimplemented.
@unit Unimplemented.
@bit_bound Allows setting a size to a bitmasks.
@external Unimplemented.
@nested Unimplemented.
@verbatim Unimplemented.
@service Unimplemented.
@oneway Unimplemented.
@ami Unimplemented.
@non_serialized The annotated member will be omitted from serialization.

Most unimplemented annotations are related to Extended Types.

18.2.12 IDL 4.2 aliases

IDL 4.2 allows using the following names for primitive types:

int8
uint8
int16
uint16
int32
uint32
int64
uint64

18.2.13 Forward declaration

The application allows forward declarations:

struct ForwardStruct;

union ForwardUnion;

(continues on next page)

18.2. Defining a data type via IDL 205

FastRTPS Documentation, Release 1.10.0

(continued from previous page)

struct ForwardStruct
{

ForwardUnion fw_union;
};

union ForwardUnion switch (long)
{

case 0:
ForwardStruct fw_struct;

default:
string empty;

};

As the example shows, this allows declaring inter-dependant structures, unions, etc.

206 Chapter 18. Execution and IDL Definition

CHAPTER 19

Version 1.10.0

This release adds the following features:

• New built-in Shared memory Transport (SHM)

• Transport API refactored to support locator iterators

• Added subscriber API to retrieve info of first non-taken sample

• Added parameters to fully avoid dynamic allocations

• History of built-in endpoints can be configured

• Bump to FastCDR v1.0.13.

• Bump to Fast-RTPS-Gen v1.0.4.

• Require CMake 3.5 but use policies from 3.13

It also includes the following bug fixes and improvements:

• Fixed alignment on parameter lists

• Fixed error sending more than 256 fragments.

• Fix handling of STRICT_REALTIME.

• Fixed submessage_size calculation on last data_frag.

• Solved an issue when recreating a publishing participant with the same GUID.

• Solved an issue where a publisher could block on write for a long time when a new subscriber (late joiner) is
matched, if the publisher had already sent a large number of messages.

• Correctly handling the case where lifespan expires at the same time on several samples.

• Solved some issues regarding liveliness on writers with no readers.

• Correctly removing changes from histories on keyed topics.

• Not reusing cache change when sample does not fit.

• Fixed custom wait_until methods when time is in the past.

207

FastRTPS Documentation, Release 1.10.0

• Several data races and ABBA locks fixed.

• Reduced CPU and memory usage.

• Reduced flakiness of liveliness tests.

• Allow for more use cases on performance tests.

Several bug fixes on discovery server:

• Fixed local host communications.

• Correctly trimming server history.

• Fixed backup server operation.

• Fixed timing issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

19.1 Previous versions

19.1.1 Version 1.9.4

This release adds the following features:

• Intra-process delivery mechanism is now active by default.

• Synchronous writers are now allowed to send fragments.

• New memory mode DYNAMIC_RESERVE on history pool.

• Performance tests can now be run on Windows and Mac.

• XML profiles for requester and replier.

It also includes the following bug fixes and improvements:

• Bump to FastCDR v1.0.12.

• Bump to Fast-RTPS-Gen v1.0.3.

• Fixed deadlock between PDP and StatefulReader.

• Improved CPU usage and allocations on timed events management.

• Performance improvements on reliable writers.

• Fixing bugs when Intra-process delivery is activated.

• Reducing dynamic allocations and memory footprint.

• Improvements and fixes on performance tests.

• Other minor bug fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

208 Chapter 19. Version 1.10.0

FastRTPS Documentation, Release 1.10.0

19.1.2 Version 1.9.3

This release adds the following features:

• Participant discovery filtering flags.

• Intra-process delivery mechanism opt-in.

It also includes the following bug fixes and improvements:

• Bump to Fast-RTPS-Gen v1.0.2.

• Bring back compatibility with XTypes 1.1 on PID_TYPE_CONSISTENCY.

• Ensure correct alignment when reading a parameter list.

• Add CHECK_DOCUMENTATION cmake option.

• EntityId_t and GuidPrefix_t have now their own header files.

• Fix potential race conditions and deadlocks.

• Improve the case where check_acked_status is called between reader matching process and its acknack recep-
tion.

• RTPSMessageGroup_t instances now use the thread-local storage.

• FragmentedChangePitStop manager removed.

• Remove the data fragments vector on CacheChange_t.

• Only call find_package for TinyXML2 if third-party options are off

• Allow XMLProfileManager methods to not show error log messages if a profile is not found.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.3 Version 1.9.2

This release includes the following feature:

• Multiple initial PDP announcements.

• Flag to avoid builtin multicast.

It also adds the following bug fixes and improvements:

• Bump to Fast-RTPS-Gen v1.0.1.

• Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.4 Version 1.9.1

This release includes the following features:

• Fast-RTPS-Gen is now an independent project.

• Header eClock.h is now marked as deprecated.

It also adds the following bug fixes and improvements:

19.1. Previous versions 209

FastRTPS Documentation, Release 1.10.0

• Bump to FastCDR v1.0.11.

• Installation from sources documentation fixed.

• Fixed assertion on WriterProxy.

• Fixed potential fall through while parsing Parameters.

• Removed deprecated guards causing compilation errors in some 32 bits platforms.

• addTOCDRMessage method is now exported in the DLL, fixing issues related with Parameters’ constructors.

• Improve windows performance by avoiding usage of _Cnd_timedwait method.

• Fixed reported communication issues by sending multicast through localhost too.

• Fixed potential race conditions and deadlocks.

• Eliminating use of acceptMsgDirectTo.

• Discovery Server framework reconnect/recreate strategy.

• Removed unused folders.

• Restored subscriber API.

• SequenceNumber_t improvements.

• Added STRICT_REALTIME cmake option.

• SubscriberHistory improvements.

• Assertion of participant liveliness by receiving RTPS messages from the remote participant.

• Fixed error while setting next deadline event in create_new_change_with_params.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.5 Version 1.9.0

This release includes the following features:

• Partial implementation of allocation QoS.

• Implementation of Discovery Server.

• Implementation of non-blocking calls.

It also adds the following bug fixes and improvements:

• Added sliding window to BitmapRange.

• Modified default behavior for unknown writers.

• A Flush() method was added to the logger to ensure all info is logged.

• A test for loading Duration_t from XML was added.

• Optimized WLP when removing local writers.

• Some liveliness tests were updated so that they are more stable on Windows.

• A fix was added to CMakeLists.txt for installing static libraries.

• A fix was added to performance tests so that they can run on the RT kernel.

• Fix for race condition on built-in protocols creation.

210 Chapter 19. Version 1.10.0

FastRTPS Documentation, Release 1.10.0

• Fix for setting nullptr in a fixed_string.

• Fix for v1.8.1 not building with -DBUILD_JAVA=ON.

• Fix for GAP messages not being sent in some cases.

• Fix for coverity report.

• Several memory issues fixes.

• fastrtps.repos file was updated.

• Documentation for building with Colcon was added.

• Change CMake configuration directory if INSTALLER_PLATFORM is set.

• IDL sub-module updated to current version.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.6 Version 1.8.3

This release adds the following bug fixes and improvements:

• Fix serialization of TypeConsistencyEnforcementQosPolicy.

• Bump to Fast-RTPS-Gen v1.0.2.

• Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen

19.1.7 Version 1.8.2

This release includes the following features:

• Modified unknown writers default behavior.

• Multiple initial PDP announcements.

• Flag to avoid builtin multicast.

• STRICT_REALTIME compilation flag.

It also adds the following bug fixes and improvements:

• Fix for setting nullptr in a fixed string.

• Fix for not sending GAP in several cases.

• Solve Coverity report issues.

• Fix issue of fastrtpsgen failing to open IDL.g4 file.

• Fix unnamed lock in AESGCMGMAC_KeyFactory.cpp.

• Improve XMLProfiles example.

• Multicast is now sent through localhost too.

• BitmapRange now implements sliding window.

• Improve SequenceNumber_t struct.

19.1. Previous versions 211

FastRTPS Documentation, Release 1.10.0

• Participant’s liveliness is now asserted when receiving any RTPS message.

• Fix leak on RemoteParticipantLeaseDuration.

• Modified default values to improve behavior in Wi-Fi scenarios.

• SubscriberHistory improvements.

• Removed use of acceptMsgDirectTo.

• WLP improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen

19.1.8 Version 1.8.1

This release includes the following features:

• Implementation of Liveliness QoS.

It also adds the following bug fixes and improvements:

• Fix for get_change on history, which was causing issues during discovery.

• Fix for announcement of participant state, which was sending ParticipantBuiltinData twice.

• Fix for closing multicast UDP channel.

• Fix for race conditions in SubscriberHistory, UDPTransportInterface and StatefulReader.

• Fix for lroundl error on Windows in Time_t.

• CDR & IDL submodules update.

• Use of java 1.8 or greater for fastrtpsgen.jar generation.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.9 Version 1.8.0

This release included the following features:

• Implementation of IDL 4.2.

• Implementation of Deadline QoS.

• Implementation of Lifespan QoS.

• Implementation of Disable positive acks QoS.

• Secure sockets on TCP transport (TLS over TCP).

It also adds the following improvements and bug fixes:

• Real-time improvements: non-blocking write calls for best-effort writers, addition of fixed size strings, fixed
size bitmaps, resource limited vectors, etc.

• Duration parameters now use nanoseconds.

• Configuration of participant mutation tries (see Participant configuration).

• Automatic calculation of the port when a value of 0 is received on the endpoint custom locators.

• Non-local addresses are now filtered from whitelists.

212 Chapter 19. Version 1.10.0

FastRTPS Documentation, Release 1.10.0

• Optimization of check for acked status for stateful writers.

• Linked libs are now not exposed when the target is a shared lib.

• Limitation on the domain ID has been added.

• UDP non-blocking send is now optional and configurable via XML.

• Fix for non-deterministic tests.

• Fix for ReaderProxy history being reloaded incorrectly in some cases.

• Fix for RTPS domain hostid being potentially not unique.

• Fix for participants with different lease expiration times failing to reconnect.

Known issues

• When using TPC transport, sometimes callbacks are not invoked when removing a participant due to a bug in
ASIO.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.10 Version 1.7.2

This release fixes an important bug:

• Allocation limits on subscribers with a KEEP_LAST QoS was taken from resource limits configuration and
didn’t take history depth into account.

It also has the following improvements:

• Vendor FindThreads.cmake from CMake 3.14 release candidate to help with sanitizers.

• Fixed format of gradle file.

Some other minor bugs and performance improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.11 Version 1.7.1

This release included the following features:

• LogFileConsumer added to the logging system.

• Handle FASTRTPS_DEFAULT_PROFILES_FILE environment variable indicating the default profiles XML
file.

• XML parser made more restrictive and with better error messages.

It also fixes some important bugs: * Fixed discovery issues related to the selected network interfaces on Windows. *
Improved discovery times. * Workaround ASIO issue with multicast on QNX systems. * Improved TCP transport
performance. * Improved handling of key-only data submessages.

Some other minor bugs and performance improvements.

KNOWN ISSUES

• Allocation limits on subscribers with a KEEP_LAST QoS is taken from resource limits configuration and
doesn’t take history depth into account.

19.1. Previous versions 213

FastRTPS Documentation, Release 1.10.0

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastrtpsgen.

19.1.12 Version 1.7.0

This release included the following features:

• TCP Transport.

• Dynamic Topic Types.

• Security 1.1 compliance.

Also bug fixing, allocation and performance improvements.

Note: If you are upgrading from an older version, it is required to regenerate generated source from IDL files using
fastrtpsgen.

19.1.13 Version 1.6.0

This release included the following features:

• Persistence.

• Security access control plugin API and builtin Access:Permissions plugin.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastrtpsgen.

19.1.14 Version 1.5.0

This release included the following features:

• Configuration of Fast RTPS entities through XML profiles.

• Added heartbeat piggyback support.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastrtpsgen.

19.1.15 Version 1.4.0

This release included the following:

• Added secure communications.

• Removed all Boost dependencies. Fast RTPS is not using Boost libraries anymore.

• Added compatibility with Android.

• Bug fixing.

Note: After upgrading to this release, it is advisable to regenerate generated source from IDL files using fastrtpsgen.

214 Chapter 19. Version 1.10.0

FastRTPS Documentation, Release 1.10.0

19.1.16 Version 1.3.1

This release included the following:

• New examples that illustrate how to tweak Fast RTPS towards different applications.

• Improved support for embedded Linux.

• Bug fixing.

19.1.17 Version 1.3.0

This release introduced several new features:

• Unbound Arrays support: Now you can send variable size data arrays.

• Extended Fragmentation Configuration: It allows you to setup a Message/Fragment max size different to the
standard 64Kb limit.

• Improved logging system: Get even more introspection about the status of your communications system.

• Static Discovery: Use XML to map your network and keep discovery traffic to a minimum.

• Stability and performance improvements: A new iteration of our built-in performance tests will make bench-
marking easier for you.

• ReadTheDocs Support: We improved our documentation format and now our installation and user manuals are
available online on ReadTheDocs.

19.1.18 Version 1.2.0

This release introduced two important new features:

• Flow Controllers: A mechanism to control how you use the available bandwidth avoiding data bursts. The
controllers allow you to specify the maximum amount of data to be sent in a specific period of time. This is very
useful when you are sending large messages requiring fragmentation.

• Discovery Listeners: Now the user can subscribe to the discovery information to know the entities present in the
network (Topics, Publishers & Subscribers) dynamically without prior knowledge of the system. This enables
the creation of generic tools to inspect your system.

But there is more:

• Full ROS2 Support: Fast RTPS is used by ROS2, the upcoming release of the Robot Operating System (ROS).

• Better documentation: More content and examples.

• Improved performance.

• Bug fixing.

19.1. Previous versions 215

	Requirements
	Common Dependencies
	Windows 7 32-bit and 64-bit

	Installation from Binaries
	Windows 7 32-bit and 64-bit
	Linux

	Installation from Sources
	Dependencies
	Colcon installation
	Manual installation
	Fast-RTPS-gen
	Security

	Getting Started
	A brief introduction to the RTPS protocol
	Building your first application

	Library Overview
	Fast RTPS architecture

	Objects and Data Structures
	Publisher-Subscriber Module
	RTPS Module

	Publisher-Subscriber Layer
	How to use the Publisher-Subscriber Layer
	Configuration
	Additional Concepts

	Writer-Reader Layer
	Relation to the Publisher-Subscriber Layer
	How to use the Writer-Reader Layer
	Configuring Readers and Writers
	Configuring the History

	Advanced Functionalities
	Topics and Keys
	Partitions
	Intra-process delivery
	Transports
	Flow Controllers
	Sending large data
	Discovery
	Subscribing to Discovery Topics
	Tuning
	Additional Quality of Service options
	Logging

	Security
	Authentication plugins
	Access control plugins
	Cryptographic plugins
	Built-in plugins
	Example: configuring the Participant

	Real-time behavior
	Tuning allocations
	Non-blocking calls

	Dynamic Topic Types
	Concepts
	Supported Types
	Complex examples
	Serialization
	Important Notes
	Dynamic Types Discovery and Endpoint Matching
	XML Dynamic Types
	Dynamic HelloWorld Examples

	Persistence
	Configuration
	Built-in plugins

	XML profiles
	Making an XML
	Library settings
	Transport descriptors
	XML Dynamic Types
	Participant profiles
	Publisher profiles
	Subscriber profiles
	Common
	Example

	Code generation using fastrtpsgen
	Output
	Where to find fastrtpsgen

	Typical Use-Cases
	Fast-RTPS over WIFI
	Wide Deployments
	Fast-RTPS in ROS 2

	Introduction
	Compile

	Execution and IDL Definition
	Building publisher/subscriber code
	Defining a data type via IDL

	Version 1.10.0
	Previous versions

